PHYSICAL REVIEW E VOLUME 61, NUMBER 4 APRIL 2000

Fisher information and temporal correlations for spiking neurons with stochastic dynamics
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Population coding accuracy can be studied using Fisher information. Here the Fisher information and
correlation functions are determined analytically for a network of coupled spiking neurons with a more general
than Poisson stochastic dynamics. It is shown that stimulus-driven temporal correlations between neurons
always increase the Fisher information, whereas stimulus-independent correlations need not do so. Addition-
ally, we find that for subthreshold stimuli there is some nonzero level of noise for which network coding is
optimal. We also find that the Fisher information is larger for purely excitatory than for purely inhibitory
networks, but only in a limited range of values of synaptic coupling strengths. In most cases the dependence of
the Fisher information on time is linear, except for excitatory networks with strong synaptic couplings and for
strong stimuli. In the latter case this dependence shows two distinct regimes: fast and slow. For excitatory
networks short-term synaptic depression can improve the coding accuracy significantly, whereas short-term
facilitation can lower the coding accuracy. For inhibitory networks, coding accuracy is insensitive to short-term
synaptic dynamics.

PACS numbgs): 87.18.Sn, 84.35:i, 87.19.Dd, 87.19.La

. INTRODUCTION notes an averaging of the estimaid({s}) over the activ-
ity of neurons{s} represented by some distribution function

Information-theoretic approaches in computational neuroP[{s};x], given a stimulus valug (in this papex is a scalar
science have become more popular recefitly8]. One of  variablg. The right hand side of the above inequality, which
the reasons for this is that information theory can provide nots valid for all unbiased estimation methods, i.e., when
only qualitative but also quantitative descriptions of neurakXesp =X [17], is known as the Cramer-Rao bound. In gen-
encoding. Neural encoding can be studied by measuring ne@ral, it is not obvious that this lower bound can be reached by
ral responses in sensory systems as a function of an exterr@p arbitrarily chosen decoding scheme. Nevertheless, there
stimulus. Based on those responses one can estimate wiaiSt Some examples where this is possji, 18. From Eq.
was the value of encoded varialj2,10—15; for a review, (1), we see that a population of neurons can optiméity
see Ref[16]. principle) extract the value of a stimulus by maximizihg.

In the presence of noise in a neural network it is not trivial  Recently the question of the relationship between popula-
to decode accurately some varialidrom the activity pat- ion coding accuracy and correlations among neurons at-
tern{s} of the population of neurons. On a trial to trial basis fracted much attentiofi9—23. In cases where one considers
there will be a discrepancy between a true vadwé a stimu- the average activity of neurons, _neglectl_ng the temporal pat-
lus and its estimated value,s({s}). Since human and ani- tern of sp|kes, the answer to this question turned out to be
mal performances in sensory and motor tasks are often vefjconclusive both experimentall19,20,24 and theoreti-
reliable, one can anticipate that the nervous system usualf@!ly [6,26]. That is, there examples were found of increased
tries to minimize that discrepancy. and decreased accuracy of population coding by correlations.

In information theory there are useful quantities for inves-However, when one considers the fine temporal structure of
tigating the accuracy of population coding. One of them isSpiking neurons, t_here are experimental mdmapons that si-
the standard mutual information between the input and outMultaneous firing, i.e., precise temporal correlations, may ac-
put of the system; a second, less often used quantity, is callé§@lly help in coding21-23,23.

Fisher informatiorf 17]. Both of these quantities measure the  This paper studies the relation between temporal correla-
degree of correlation between an input and an output. ThHONS among neurons and the accuracy of population coding
Fisher information measures information about a given valu!Sing the concepts of correlation functions and Fisher infor-
of the stimulus, whereas the mutual information measure§ation. We derive explicit expressions for those quantities in
information about a distribution of possible values. In thisthe sparsely connected neural network. Additionally, we de-
work we consider the Fisher information. termine which of the factors—noise, the type of synaptic

The Fisher information£(x) is a measure of the encod- cOUPling, short-term synaptic dynamics, and the size of neu-
ing accuracy of some quantity because it is related to the fonal population—increase the Fisher informatidmence
lower bound of the variance of the estimaiqg,, which is  Improve the coding accuragyand under what circum-

equal to((Xes—X)2), by an expression stances. The Fisher information was studieq before in the
context of the accuracy of population codifg-6,8,9.
) 1 Those papers either did not consider correlations between
((Xest— X)) = Ie(X)’ (1) neurons[4,5] or take into account correlations, but neglect

the fine temporal structure of neural activf®,8,9. In con-
where (xgsp =2 P[{s}:x]xgs{{S}); i.e. symbol(xgsy de-  trast to those papers, we investigate a stochastic network
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model of spiking coupled neurons with a more general tharadditionally, that it is optimal for narrowly tuned driving
Poisson dynamics. Specifically, we do not assume any painputs|[8], regardless of the fact whether neurons are corre-
ticular type of correlation for noise between neurons. Insteadated or not.

we assume that the network dynamics is governed by a cer- The basic ideas and results are provided in the main text
tain stochastic process caused by some intrinsic noise in tH@f the paper. Details about particular derivations are pre-
network, as well as by an external stimulus. The resultingsented in the Appendixes.

correlations between neurons consist of stimulus-driven and

stimulus-independent correlations. The latter are the result of Il. NETWORK DYNAMICS

intrinsic “noisy” dynamics mediated by synaptic coupling.
In the approaches of Abbott and Daygg] and Zhang and
Sejnowski[8], one cannot distinguish between these two

types of cq(;relanons. Tlhg ngtw_ork ;pproachhtaken n th'Sstate of the present and past activities of all neurons in the
paper provides a natural distinction between them. network; therefore, it is a conditional probability. We model

The main result of this paper is to show that there is §ne pronability that neuron is in states,(k+ 1) at time step
monotonic relation between stimulus-driven temporal correy by a discrete-time model with a length of a time step
lations and the accuracy of population coding. This meangg

that the stronger these correlations, the larger the Fisher in-
formation and more accurate the coding. However, there is

In the presence of noise in a network, the output of a
given neuron is represented by the probability that the neu-
ron will fire. This probability, in general, depends on the

no systematic dependence between stimulus-independent Plsa(k+D{s(1)}{s(2)}, ... {s(k)};x]
temporal correlations and the Fisher information if the driv- 1 R,(K)
ing input is subthreshold. For suprathreshold inputs, these =3 1+[2s,(k+ 1)—1]tan)'{ - D 2

correlations always lower the coding accuracy. The finding
that stimulus-driven temporal correlations between neurons

improve the accuracy of coding is consistent with experi-iyy ot neyrons in the network can be adequately described by
mental results of Daet al. [25]. _ a two-state neuron model, i.&,(k)=1 if neurone fires at
Additionally, it is shown that there is some nonzero leveljme stepk, ands,(k)=0 if it does not[32,33. Symbol
of noise for subthreshold stimuli for which the Fisher infor- 5y represents the activity of all neurons in the network at
mation is optimal. This behavior resembles the phenomenofime stepk. The time unitr can be of the order of an effec-
of the “stochastic resonance” found in some parts of thetiye membrane time constant or refractory period. The pa-
nervous systerfi27-30; for a review, see Ref31]. rametery is a measure of noise in the network. Fp:0 the
Another finding is that there is a relationship between thenetwork is noiseless, whereas fgr>o the noise is maxi-
type of synaptic coupling and the accuracy of the codingmal. In the latter limit the probability of firingEq. (2)], at
The Fisher information has a maximum for positive values ofany given time stefx is always equal to 1/2. The choice for
synaptic couplings, suggesting that excitatory networks perthe probability given by Eq(2) is motivated by the fact that
form better than inhibitory networks. However, inhibitory it has a sigmoidal shape as a functionRyf(k). This type of
networks are more broadly tuned, which may, in certainstochastic dynamics was pioneered in condensed matter
cases, be more advantageous. We made computations fohysics in studying Ising-type models with thermal noise
networks with homogeneous couplings between neurons e{for example, cf. Ref[34]). A later, similar dynamics was
ther purely excitatory or purely inhibitory. This greatly sim- used by others in other contexts, namely, to study temporal
plifies the analysis, which is already complicated. association$35] and correlations in the Markov-type neural
The dependence of the Fisher information on the timemodel[36].
course is linear for inhibitory networks regardless of the The functionR,(k) in Eqg. (2) contains the entire infor-
strength of synapses and stimulus. Excitatory networks showation about the activity of all other neurons at earlier times
a different behavior. For weak coupling and weak stimuli,up tok step. We represem,(k) in a standard way:
the dependence is linear, whereas for strong coupling with
strong stimuli there are two distinct regimes. The initial re-
gime exhibits very fast grovyth, whlle.a subsequent regime R, (K)= z 3o p(K)S5(K) +Co(X) — 6. 3
shows slower growth. Possible functional consequences of fFa
this behavior are discussed in Sec. V.
The impact of short-term synaptic dynamics on the Fisher Herec,(x) is a time-independent driving input or a drive
information is also studied. It is found that synaptic depresto the neurona caused by an external stimulxs 6 is a
sion can improve the coding accuracy by an order of magnithreshold for firing(when noise is absentidentical for all

tude for a network of purely excitatory cells with sufficiently neyrons: anajaﬁ(k) is a time-dependent synaptic coupling
strong coupling and for strong stimuli. On the other handrom the presynaptic neurgs to the postsynaptic neuran.
synaptic facilitation can decrease the coding accuracy for gye choose this coupling to be time dependent because we
population of excitatory cells, but not in such a dramaticyant to include the effect of short-term synaptic plasticity

way. Short-term synaptic dynamics does not have any ng37 3g. The synaptic coupling is modeled in the form
ticeable influence on coding for purely inhibitory networks.

We also confirm previous findings that the Fisher informa- _
tion grows linearly with the size of the netwofl6], and Jop(K)=[1—asg(k—1)]J,5- 4

For our purposes, it is sufficient to assume that the activ-
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This form mimics short-term synaptic dynamics effects Taking the above into account, one can rewrite (&g1as
through the presence of a paramet@ia| <1). Negative val-
ues ofa correspond to synaptic facilitation, while its positive M _
values correspond to synaptic depression. Equatién Pls(1), ... -S(M)?X]:Hl Ps(i);x], @)
shows that when the presynaptic neug@iires at time step a

k—1, the synaptic strength from neurghto neurona at  \yhich greatly simplifies further analysis in determining the
time stepk will be reducedor amplified ifa<0) by a factor  gisher information. The Fisher information can be defined by
(1—a). Our model of the network dynamics is not Markov- [17]

ian when the short-term synaptic dynamics is taken into ac-
count. We recover Markovian dynamics in the lirait>0.

In Eq. (4), time-independent coupling, s is represented lp= T > ) P[s(1), ..., s(M);x]
by Ja,g:JE';:lﬁayﬁﬂ, which means that we assume that 77777
each presynaptic neuro is connected td\ postsynaptic #2InP[s(1), ... s(M);x]
neuronsB+1, ... ,8+N, with the same strength whereN X : (8

2
is a number of synaptic connections. Additionally, we as- 24

sume that the number of these connections for a given neu-
ron is much smaller than the number of neurdhsin the
network, i.e.,N<N,. Notice that the synaptic coupling is
asymmetric; that is, ifl,;# 0, thenJz,=0.

Substituting Eqs(6) and (7) into Eq. (8) and performing
the necessary algebra yieltsf. Appendix D,

In Appendix A we show that the dynamics represented by = M7 (‘7_C> ? 9)
the probability in Eq(2) can be reduced to the Poiss@m- F ) (c—6)\ dx
correlatedl dynamics for a subthreshold driving input in the 7” cosit
following limits: (i) no synaptic coupling)—0; (ii) weak
noise, (@—c)/»>1; and (iii) long observation time, The drivec is a function of a stimulug. In Sec. IV it is
M 71— 0. shown that the average firing rate is an increasing function of
c¢. This implies thatt should depend or in a fashion quali-
IIl. EISHER INFORMATION tatively similar to the way the firing rate dependsnit is

experimentally well establishe#0] that the latter depen-
First we determine the Fisher information for a singledence, known as a tuning curve, often has a pronounced
neuron. This case is easier to analyze, and will enable us tmaximum. Guided by this, in this paper, we assume the fol-
obtain some insights into the more complicated case of maniwing shape for the driving input of the neuren
neurons. The latter case is analyzed subsequently.

) é(x—xa)JrA, X~ OSX=X
A. Single neuron o

In order to calculate the Fisher information contained in a c,(x)= A (10
random signak(1),s(2),...,s(M) given the parameter, B ;(X_Xa)+A' XaSXSXo T 0o
whereM is the number of time steps, one must determine the
joint probability that a neuron at any timer<M 7 was at a
certain state  s(k). The joint probability
P[s(1),s(2), . ..,s(M);x] given inputx, can be written in
general ag39]

0 otherwise,

whereA is the amplitude of the stimulus-induced drive and is
the same for every neurdthis amplitude is proportional to
a contrast of a stimulus, and therefore we will call it also
contrast interchangeablyo is a width of “sensitivity” of
P[s(1), ... .s(M);x]=P[s(1);x]P[s(2)[s(1);x]- - - the drivec, on a stimulusx (o is the same for every neu-
X P[s(M)[s(1), . .. S(M—1):x], ro_n), a_nd finallyxa is the value of a.stimulus for which the
drive is maximal. One can also view as the parameter
(5  characterizing the size of a “receptive field” of each neuron.
Using the expression on the drij&g. (10)], one can
wheres(k) is defined as before. This equation is derived inrewrite Eq.(9). If we additionally averagér over different
Appendix B. The form of the conditional probability values x, of stimulus for which the drive is maximal
P[s(k)|s(1), ... ,s(k—1);x], that the neuron fires at time [xy—x, in Eq. (10)], we obtain
stepk, indicates that it may depend on this neuron’s past

activity. In the present case, however, there is no history — 2AM7pg A—6 0
dependence and therefore that probability reduces to lF= no tan 7 +tan 7| 1D
P[s(k)[s(1), ... s(k—1);x] whereTF=ff/21’jgpodepolF, and averaging ovex, is per-
=P[s(k);x] formed with a uniform distributiopy. Such averaging may

1 (00 seem artificial in the case of a single neuron; however, for
c(x)— o L . :
=Z[ 1+[2s(k)—1]tan . 6 many neurons it is a necessity, since different neurons are, in
general, exposed to different driving inputs.

2
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FIG. 1. Dependence of the Fisher informatignon the ampli- 3800
tude A (contrast of the driving input without the short-term synap-
tic dynamics &= 0). Note thatl ¢ is a monotonic, growing function 3000
of A. The solid line represents the excitatory network with0.2.
The dashed line corresponds to the inhibitory network with 2500

—0.2. Other parameters afd =100, =o=7=1.0, Ny=1000,

andN=10. 2000
Formula(11) shows that, for a subthreshold driving input e

(A< ), the Fisher information takes a maximal value for a

nonzero values of noisg. In the limits »—0 andp—o, | ¢
vanishes. As we will see in Sec. Il B, a similar conclusion
will be valid for the case of many correlated neurons. Note

that a scaling e(~o 1, proposed by Zhang and Sejnowski
[8] in the firing rate type model, is also valid here; it will be . , , ,
valid in the case of many neurons as well. The latter depen: e ez 04 06 08 1 124 16 8
dence says that narrowly tuned stimulus-driven inputs are n

more advantageous in terms of information proces§ilg

1500

1000

FIG. 2. Dependence of the Fisher information on the noise in
the network. In both figures the solid line corresponds to an inhibi-
B. Many neurons tory network, and the dashed line to an excitatory netwgk.The
The joint probability P[{s(1)}, ... {s(M)};x] in the case for the subthreshold driving input. Notice the pronounced

case of many coupled neurons can be written in general dgaxima for some nonzero level of noise. An excitatory network
[39] exhibits additional smaller maximurtB) The case for the suprath-

reshold driving input. Notice that: is maximal for noiseless net-
works and decays with an increasing level of noise. Parameters

PL{s(1)}, - .- As(M)};x] used:(A) A=0.5 andJ=0.3 for the excitatory network, and=
Ng —0.3 for the inhibitory network(B) A=1.2, and the synaptic cou-
= H Psa(1);X]P[S.(2)]{s(1)};x]- - - plings are the same as (A). Other parameters are exactly the same
a=1 as in Fig. 1.
XP[s,(M)[{s(1)}, ... {s(M—1)};x], (12

more explicit, the state of each neuron ka1 time step
where P[s,(K)|{s(1)}, ... {s(k—1)};x] is given by Eq. depends on the pattern of synaptic couplings in khiéme
(2). The above form of the joint probability assumes that theStep, which in turn depends only on the state of the neurons
activity of a given neuron at any given time depends on thdn the k—1 time step. This means that every neuron can
past activities of all other neurons, and does not depend offemember” what happened in the network up to two time
those activities at that given time. In other words, we takesteps back. Derivation of Eq12) is presented in Appendix
into account some history-dependent correlations in the neB.

work. In our particular model, Eq(12) can be further Having the joint probability, one can determine the Fisher
simplified by noting that, in fact, we information contained in the activities of the population of
have  P[s,(K)[{s(1)}, ... {s(k—1)};x]=P[s,(k)|{s(k  neurons in the network. As before, we averdgeover a

—2)},{s(k—1)};x], which is a consequence of the assumeduniform distributionp, of all {x,} for which drives are maxi-
form of the synaptic dynamidsompare Eqs.2)—(4)]. Tobe  mal. We obtain
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FIG. 3. Dependence of the Fisher information on the synaptic 4

strength. The solid line correspondsAe- 0.5 (subthreshold inpuit {b)
and the dashed line t&=1.2 (suprathreshold inputNote that the asol- s
maxima of | ¢ fall to positive values of the synaptic couplings re- ///
gardless of the magnitude of the driving inputs. Also note a steep 3o R
decay ofl ¢ for positive values of the synaptic couplings. The back- //'
ground noise value ig=1. mor o
M I|: 200 ////
IF:T;TI(:I)v (13) 150 ,//
wherel_g) is the averaged Fisher information per time at time " /,/
stepi. In Appendix C we sketch how to perform such aver- | e
aging. In the limita—0, i.e., when the short-term synaptic /,/’
plasticity is absent, and for low densipy, I_Q) is given by o5 = ™ T80
N N time
T'(:i)(azo): ANopO > D FIG. 4. Dependence of the Fisher information on the time
2N('_l)_17]o' ki=0 ki—1=0 course for excitatoryA) and inhibitory(B) networks. In both cases
0 _ time is measured in units equal to(A) For not too strong synaptic
XFi'(n,d,0:ky, ... ki—1) couplings =0.1) and weak driving inputsA=0.5), the depen-
Kk JLA—0 dence is almost lineafsolid line). When the input and synapses
% tan?‘( i-1 become strongA=1.5,J=0.3; dashed linethis dependence has
two distinct regimes: fast initial growth and later a more slow

Kk J—0 growth. (B) Dependence of - on time for inhibitory networks is
—tan?(;> } +O(p(2)), (14 linear even for large driving inputs and strong synaptic coupling;
n the solid line corresponds #=0.5 andJ=—0.3, and the dashed
_ line corresponds t&A=1.5 andJ=—1.0. Inhibitory networks, in
with general, provide more information about a stimu{nste the dif-
) ference in scale
FO(9,9,0,ke, ... ki_1)
- long asM satisfiedNM<N,. This limit greatly simplifies the
1 N it kj_1d—6\]% analysis, and computation ¢f9 can be controlled at any
et K; an time stepk satisfyingk<<M.
The Fisher information grows linearly with the number of
Kj—1J— 0 neuronsN, in the network(keeping the number of connec-
1-tan tions N per neuron constantThis suggests that the coding
i
accuracy improves with increase of the size of the neuronal
where integerk,=0. Details of derivation of Eq(14) are  population. The same conclusion was reached in Rgfor
presented in Appendix D. The key assumption in derivingﬁring rate models. Also note that the Fisher information is
Eq. (14) is that the observation tim#l 7 is not too long, so optimal for narrowly tuned driving inputsas beforg, be-
that one can neglect “recurrent” effects. From a technicalcause of the scalinge~o 1.
point of view, this means that our expressions are valid as The dependence of the Fisher information on the ampli-

N*kJ

X , (15
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tude of the drive, noise, synaptic strength, and time was de4(b)], |- grows almost linearly with time regardless of the
termined numerically using Eq&l4) and(_15). An important magnitude of the drive and coupling.

finding, which will be used later, is thdag grows with the Computation of the Fisher information when the short-
amplitudeA of a drive(contras}, which means that the stron- term synaptic dynamics is included is more complicated. It
ger the stimulus the better it is for coding. This dependencean be made a little easier in the case of a network with very
is depicted in Fig. 1. sparse connections for which,;=J4, 541, i.€., when each

Note that the dependence Epf_ upon noise has a pro- neuron is connected only to one of the remaining neurons.
nounced maximum for some finite if the driving input is  For such a network one can fing4—0)

subthresholdFig. 2(a)]. For a suprathreshold drivEFig. 11 1 1
2(b)], the Fisher information has a maximum fge=0 and iy, ANopo
. L. . . IE(a)_# Z
decreases monotonically with increasing noise. These behav 2(i-2) , + o K=o K<Lo o
. . . 2 no 1 i—2 1
iors are the same as in the case of a single ne[sea Eq.
(11)]. In both cases, however, the noise “window” for ! ()
which the network encodes stimulus optimally is narrow. XH.E:O H"(7,d,a,0;{k},{n})
Dependence of the Fisher information on the synaptic e
strength(Fig. 3) reveals an interesting behavior. The peak of X GO (7,3,a,0;m,k_,,ni_5,n_3)+0(p3),
| falls to positive values of the synaptic couplidgwhich (16)

shows that excitatory networks perform better in terms of the h ; ion<G® andH® ) b
population coding. However, this is the case only in the vi-VN€re function an are given by
cinity of the maximum. For positive values dfaway from

. . GO(7,J,a,6;mki_5,n_5,N;_3)
that maximum, - can be much smaller than for negatidie

Thus excitatory networks are advantageous over inhibitory _ Ki—pJ(1—anj_3z)— 0]\
ones, but only in a limited range of values of the synaptic =|1+tan ”
couplings. - e
Figure 4 shows thaky is a growing function of the ob- y 1_tam{ki2‘l(1_ani3)_ 9})
servation timeM 7. Again, we find a distinct behavior for n
excitatory and inhibitory networks. For excitatory networks mI1—an_,]+A—0
[Fig. 4@], when the drive is subthreshold and the synaptic % tanl‘( i—2 )
coupling not too strong,- depends almost linearly on time. Y
However, when the drive is suprathreshold and coupling mJ1l-an_,]—6
stronger, the growth df has two phases: the initial phase is —tan 7 (17)
very fast, and  reaches substantial values quickly; and the
second phase is much slower. For inhibitory netwdikg.  and
|
i—2 K: 1—k:
. ki J(1—an;_,)—0|\" ki_1J(1—an;_,)—#6 i
HO(5,3,a,0;{k}{nH=]1 1+tan|{ =2l i=2) D (1—tan>'{ =2l i=2) D
<1 ] U
n_J(1—ak_,)—6]\" n_J(1—ak _,)—6]\1 ™M
X 1+tan)'{ j-2) . i-2) D (1—tam{ -2 . i-2) D . (18)

In the above expressiors ;=ko=n_;=ng=0. One can ing input (A=1.0, §=1.0) there is 50% increase I ob-
check that in the limita—0, Eq. (16) reduces to Eq(14)  tained by changing from zero toa=0.8; for J=4.0 and
with N=1 (for this see Appendix P Notice that also here suprathreshold driving inputA=1.2, §=1.0), there is

le~No, indicating that larger populations of neurons are500% increase g [Fig. 5a)]. Short-term synaptic facili-

more accurate in coding. tation (@<0) has the opposite effect on the Fisher informa-
As before, Eq(16) has been solved numerically for dif- tion; it reducesl ¢, although not so dramatically. The sur-

ferent magnitudes of the synaptic plasticityThe results are prising result is that for inhibitory networks the short-term

displayed in Fig. 5. For excitatory networksig. 5a)] there  synaptic plasticity does not have any significant influence on

can be a substantial increase in the Fisher information byhe Fisher informatiofiFig. 5(b)].

increasing the depression amplitudéa>0), provided the

synaptic coupling is strong enough. For example, wien IV. CORRELATION FUNCTIONS

=0.2 (A=0.5), I stays almost constant regardless aof It this section we study the relationship between temporal
However, when the coupling is increased, one can notice gorrelations among neurons and the accuracy of information
dramatic increase ihg ; for J=2.3 and threshold-equal driv- processing. One would like to know whether temporal cor-
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relations are advantageous or harmful for this task. In ordewhen the short-term synaptic dynamics is absexnt>(Q).
to answer this question we calculate correlation functiong-or delay correlation function, i.e., fge=1, we obtain
and compare them with the Fisher information.

The correlation functionC,; between activities of the 1 N N
neuronsa and B is defined in a standard way, Cup(k,j)= 2 (N=n,)

_ _ oN(kHj—1)+1N g "'n .
Cop(koj) = (sa(k+])s4(K)), (19 ' o

_ _ _ y{nk+le+Ca—0>}
where symbol(---) denotes averaging over noise, which X|1l+tanh ———
formally means averaging with respect to the joint probabil- 7

ity given by Eq.(12). This correlation function has the fol- Nk-1J+Cg— 6
lowing interpretation. It is a measure of the probability that X 1+tam(—>
the neurona fires at time stefk+ j, provided the neuroB . K
fired at time stefk. Note thatC ,; takes values only between X F(lk“)( 7,3,0;n1, ... N j-1)+O0(po),

0 and 1, since &s,(k)<1.

The computed below correlation functions are nonstation- (20
ary ones, since we do not assume that the network is in any _
equilibrium stategalthough such a state is reached after somavhere the functior "1 was defined before in E4L5). For
initial time). Also, formulas below were derived for the case equal time correlation function, i.e., fgr=0, we obtain

— 1 A N " Nak_1d+Co— 0
Ca k,o T o2N(k—1)+2 e F(k) y‘Jaa; na ’ n 1+tan)’( = - )}
Ngy_1J+Cg— 6
X 1+tan|‘('8’kl+ +0(po), 2

where

na'j+nﬁ’j

N, —1tngi_1)J—80
1+tan)‘(( 171 j” ) )

2ana‘jan’j

-1 N N
Q) : =
F3'(1,,0,{n,},{ng}) ,-Hl (na,,-)(”m

1_tan|-((na'11+ nB’J,l)J_ 0)
n

X

(22

In Egs. (20) and (22), SymbolC:aﬁ denotes averaging.; coupling between neurons is strong there can be quite large

over all {x.} exceptx, andx,. The equal time correlation stimulus-independent _correlations. For weak_ coupling
{,/}—p A g (J—0) and for the noiseless networky{>0), stimulus-

function C,4(k,0) is a measure of coincidence in the firing independent correlations are very weak. This can be seen
of the two neuronsy and B. This fact makes it a suitable formally by noting that factors(1+tanH(nJ— 6)/%])—0
quantity for a comparison with the Fisher information, i.e.,when »—0.
with the accuracy of the population coding. An interesting When a stimulus is present the drives are nonzero, since
fact to note is that the correlation functions between the twdhey reflect the appearance of a stimulus. The correlation
neuronsa and B in Egs.(20) and(21) are composed of the functions are monotonic functions of the drivieze factors
sum of the two products: factors with the driving inpats  with tanh containings, andcg in Egs.(20) and (21)], i.e.,
andcg, and factors withF; andF, functions. The former the larger the drives the stronger the correlations between
factors are directly related to a stimulus, whereas the latteneurons. The correlation is maximal whep and ¢, take
are the network contributions. In the limilit>0, i.e., without  their maximal values. This can happen only wigrandx,
coupling, only the stimulus-dependent part remains; sumghe values of a stimulus for which driving inputg andcg
over theF; and F, functions yield a numerical factdfor =~ are maximal, are identical. That is, correlation is proportional
this see Eq(D14) in Appendix D. to the degree of overlap between “receptive fields, and

The correlation function$Egs. (20) and (21)], are non- ¢, of the two neurons. This type of correlation is termed a
zero even when a stimulus is absent, i.e., wagrcz=0.  stimulus-driven correlation. It is important to note that one
We call these types of correlations stimulus-independent coreannot, in general, decompose correlation functions into a
relations. Their existence lies in the fact that there is somsum of stimulus-independent and stimulus-dependent parts
intrinsic noise in the network which causes some back- (this is possible only for very weak stimuli; then one can
ground spontaneous activity, i.e., neurons fire occasionallperform a Taylor-series expansion and drop higher order
even without an external input. If the excitatory synapticterms.
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In Fig. 6, correlation function defined ag—aﬁ(j) if those are stimulus-driven correlations. This result is one of
- M =~ . the main results of this paper. Also note that correlations
=(IM)Z}=1Cap(k,]) is plotted for different values of the oyeen two neurons are stronger when the locations of the
synaptic couplingJ. One can see a pronounced peak ofpayima of their drivesX, andxg) are closer. That is, cor-

C.p()) for j=0 for excitatory networks, indicating a strong re|ations increase with the degree of overlap of their recep-
dependence between neurons. For inhibitory networks thajye fields.
peak is much smaller. The half-width of all peaks is approxi-  The relationship between correlations and noise displays
mately equal to 2, which is consistent with the degree of an interesting featurérig. 8). For excitatory network§Fig.
“memory” present in the networkcf. Sec. V. 8(a)] correlations are optimal for some nonzero level of noise
In Fig. 7, peaksC,z(0) of the correlation function are poth for subthreshold and suprathreshold driving inputs. For
plotted as a function of the amplitudeof the driving inputs. inhibitory networks[Fig. 8(b)], correlations always grow
This dependence is monotonic, similar to the dependence gfith an increasing level of noise, initially quickly and later
|- on A. These two facts indicate that the Fisher informationmore slowly, regardless of the value of the drives. These
|_|: is proportional to the degree of correlations in a net\,\,ork,result_s indicate; that the probak_)ility of simultanequs firing_for
cells in an excitatory network is large for some intermediate
160 . . : : : : : noise, whereas for cells in inhibitory networks this probabil-

ity grows with an increasing level of noise. This type of
140 behavior is different from the dependence of the Fisher in-
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FIG. 5. Dependence of the Fisher information on the short-term 09 ———————5 o o 2 0 a2 =

synaptic plasticity parameterfor excitatory(A) and inhibitory(B) t
networks.(A) The solid line corresponds tb=4.0 andA=1.2, the o
dash-dotted line t@J=2.3 andA=1.0, and the dashed line tb FIG. 6. Correlation functiorC . 4(t) between two arbitrary neu-

=0.2 andA=0.5. Notice a dramatic increase in the Fisher informa-rons« and 8 as a function of time (in 7 units) for excitatory(A)

tion for strong stimuli and strong synaptic couplin®) The solid  and inhibitory (B) networks.(A) The solid line corresponds td

line corresponds td=—0.2 andA=0.5, the dashed line td= =0.2 andA=0.5, and the dashed line tb=0.15 andA=0.5. (B)
—1.5 andA=0.9, and the dash-dotted line tb=—4.0 andA The solid line corresponds tb= —0.2 andA=0.5, the dashed line
=1.2. Notice that the Fisher information staf@mos} intact re- to J=—0.1 andA=0.5, and the dash-dotted line = —0.2 and
gardless of the amplitude of the short-term synaptic dynamics A=1.2. Note that neurons in the inhibitory networks are far less
Background noisen=1. correlated.
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FIG. 7. The maxima of the correlation functi@(O) as a
function of the amplitude? of the driving inputs. This dependence FIG. 8. Dependence of correlations upon noise in the network of
is monotonic, similarly as the dependerigeuponA (compare Fig.  excitatory (A) and inhibitory (B) neurons. For both networks this
1). (A) Excitatory networks: the solid line correspondse 0.2 relationship is independent on the drive amplitude, i.e., subthresh-
with x,—xz=0.8, and the dashed line td=0.2 with x,—Xg old and suprathreshold inputs yield the same behaviy.Solid
=0.1.(B) Inhibitory networks:J=—0.2,x,—xz=0.8 (solid line), line: J=0.2 andA=0.5; dashed lineJ=0.2 andA=1.5. Notice
J=-0.2, x,—x=0.1 (dashed ling The differencex,—xz is a that correlations exhibit a pronounced maximui@) Solid line: J
measure of the degree of overlap between “receptive fields” of the= —0.2 andA=0.5; dashed lineJ=—0.2 andA=1.5. In this case
two neuronse and 8. The smaller this difference, the more they correlations grow with an increasing level of noise. In both figures,
overlap (=1.0). Notice that correlations are greater for neuronsX,—Xz=0.8 ando=1.0.
with more overlapped receptive fields. .

where symbok, denotes averaging the quantgy with re-
formation on the noisé€Fig. 2), suggesting that there is no spect to all{xg} but x,. This expression shows that the

explicit relation betweerl and the stimulus-independent average firing rate of therth neuron, which is equal to
correlations. This result is also one of the main results of thi§§a>/7, is a monotonic function of the driving input,, .

paper. Because of the noise, this neuron will fire occasionally even
We also derived the average firing rate, which is proporwhen the driving input is absent. Notice the network contri-
tional to(s,(k)). For very low densityp, we obtain bution through the presence of thg functions. In the limit
J—0, i.e., when there is no coupling between neurons, the

N network contribution disappears and Eg3) reduces to

1
(8K =T 2, Cu(X)— 0
l+tani‘(a77)

n;=0
nk,lJ“l‘Ca_ 0
1+tanh ———— S . . -
7 which is a well known sigmoidal dependence of the firing
® rate on a driving input. Expressiori23) and (24) are con-
XF1(7,3,0;n, ... nk-1)+O(po), (23  sistent with an experimental fact froMl of a cat that the

, (29)

— 1
(sa(k)=3

>

Ng-1=0
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firing rate of a cell increases with contrast40], which is 1
proportinal toc, . In Appendix D we sketch how to obtain

(8a(K)) and(s,(k+j)ss(k)).

0.95~

V. DISCUSSION AND SUMMARY

The main result of this paper is in establishing a mutualj
relation between quasiprecigsgee below temporal correla- <,
tions among neurons and the accuracy of the population cods®
ing. A quantitative measure of the accuracy of the population
coding is provided by the Fisher information. This quantity
was determined for both purely excitatory and purely inhibi-
tory networks, in the limit of a not too long observation time
when recurrent effects can be neglected, and compared wit!

the maxima of the cross-correlation functio@s,(0) for 0755 = - = s o 0
two arbitrary neurons. If the change in the correlations be- |

tween neurons is caused by a stimulus, then the Fisher infor F

mation changes accordingly in a monotonic fashion. That is,

if the amplitude of the drive increases then both the Fisher ~ ** ' ' ' ' ' P
information (Fig. 1) and the temporal correlation&ig. 7) sl - |
grow. In Fig. 9 we display this one-to-one correspondence e
between the Fisher information and the stimulus-driven tem- ol .7 i

poral correlation?‘faﬁ(O)Stim between two arbitrary neurons e
a and B. This figure suggests that this type of correlation ossr .7 ]
. . . £

improves the coding accuracy. On the other hand, if the 3 | . |
change in the correlations is caused by an intrinsic change it o P

the network, such as the change in the level of noise, there® sk
there can be no monotonicity between such stimulus-

independent correlations and the Fisher information. This

can be seen by comparing the dependendg @indC,, 5(0)
on the level of nois€Fig. 2 vs Fig. 8. Specifically, one can

note thatEaB(O) depends on the noise in the same fashion . ,

for both subthreshold and suprathreshold drives. This shoulc o % 100 1% | a0 260 800 80
be contrasted with the dependencd pfupon noise, and the F

fact that subthreshold and suprathreshold signals yield differ-

havi . isol h lationshi FIG. 9. The Fisher information vs stimulus-driven temporal cor-
ent be_awors. In Fig. 10, we display the relationship be'relations(:E,,B(O)stim. We varied the amplitudé of the driving

tween Iz and these stimulus-independent correlationsnput, and examined how the Fisher information and correlations
C.p(0)noise- For subthreshold inputs, there is no monotonic-were changing(A) Excitatory network with)=0.2; the solid line

ity between these two quantities, and one can note mangorresponds tx,—Xz=0.8, and the dashed line tg,—xz=0.1.
scattered points in F|gs ﬂ@ and ch) This pecu|ar pattern (B) |nh|b|t0ry network withJ=—0.2 and with the same graphical
is a consequence of the fact that in some intervals correlatiofPnvention as irA). Note that the Fisher information is a mono-
is a double-valued function of the Fisher information. Fortonic function of this type of correlation between neurons.
suprathreshold inputs, stimulus-independent correlations are

almost always harmful to the coding accuracy.

The above result that only stimulus-driven correlationsvisual coding, and found that reconstruction of a stimulus is
always increase the accuracy of coding can be understoadore accurate if these correlations are taken into account.
using the concept of mutual information. The mutual infor- They also found that temporal correlations between neurons
mation|,,; between activities of neurons and stimulus is aare stronger for pairs of neurons with more greatly overlap-
measure of their mutual dependency. Whenever the stimulysing receptive fields. This is also consistent with our results
is changing, the output of the network changes accordinglysee Fig. 7.
and | ,,; provides a quantitative measure of this change. The precision of temporal correlations between neurons in
Since mutual information is directly related to the Fisherthe model studied in this paper is probably not too high. The
information in a monotonic waj5], this suggests that there length of the time birr is of the order of an effective mem-
should be a monotonic relationship between the stimulus anbrane time constant, which is about 10—20 ms. For this rea-
the Fisher information. This is why stimulus-driven correla-son, we are unable to say anything about correlations at
tions should improve the accuracy of population coding. smaller time scale 1-2 ms, relevant for a single spike width.

Our conclusion about the relationship between stimulusNevertheless, within this model one can still take into ac-
driven correlations and the accuracy of coding is in agreeeount the temporal pattern of spikes.
ment with experiment and analysis of Danal.[25]. Those The level of intrinsic noise in the network also has an
authors studied the role of precise temporal correlations in afluence on the population coding. We found that this influ-

0.85[
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FIG. 10. The Fisher information vs stimulus-independent temporal correlaBigg(®),,ise- We varied the level of noise, and examined
how the Fisher information and correlations were changing. Gaégesnd(B) correspond to excitatory networks wills- 0.3 and the driving
inputs: subthresholdX=0.5) (A), and suprathresholdd= 1.2) (B). Case<C) and(D) correspond to inhibitory networks with= —0.3 and
the driving inputs: subthresholdA&0.5) (C), and suprathresholdA=1.2) (D). Notice that for subthreshold driving inputs there is no
monotonicity between stimulus-independent correlations and the Fisher infornasises(A) and (C)]. For some intervals correlation
Cop(0)noise is a double-valued function of the Fisher informatign This is the reason why there are many scattered poir()imand(C).
For suprathreshold inputs noise-induced correlations almost always decrease the Fisher inf¢caseB) and (D)].

ence depends strongly on the magnitude of the drive. If thés as follows. When a signal is weakubthreshold then
amplitude of the drive is subthreshold, then the Fisher inforneurons fire very infrequently. The intrinsic noise can en-
mation has a maximum for some finite noig¢Fig. 2@)]. If hance the signal from time to time, such that the resulting
the amplitude is suprathreshold then the Fisher informatiosignal crosses a threshold and there is an increase in the
decreases with increasing noifieig. 2(b)], and is optimal firing rate. This, in turn, increases the information transfer,
when the noise is absent. In other words, the accuracy dfince the latter is a monotonic function of the former for low
coding is optimal for slightly noisy networks if the signal is firing rates[42,43. For a higher level of noise, the signal is
subthreshold, and if the signal is suprathreshold the accuracjominated by noise; therefore, it becomes more difficult to
is optimal for noiseless networks. This behavior resemblesay something about the original signal. In the opposite re-
the phenomenon of stochastic resonaf@e-31, with the  gime, when the signal is stronguprathresholdthen neu-
subtle difference that noise considered in this paper is arons fire very often. In such circumstances increasing the
intrinsic property of the network, and not applied externallylevel of noise disrupts the signal, and hence decreases the
as in the standard stochastic resonance phenomenon. In timormation transfe(mutual information and therefore re-
latter case there have been studies about the degree of cohduces the Fisher information.

ence between the output and input of a system or information Note that the Fisher information can be much larger for
transfer, i.e., a mutual information, as a function of an extersuprathreshold stimulfcompare scales in Figs.(@ and

nal noise. The explanation for the noise-dependent behavid@(b)]. Also, it is apparent that purely inhibitory networks are
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more broadly tuned to noise than purely excitatory networksinformation contenf47]. Therefore, depression increases in-
This feature might serve as one of the functional distinctiongormation transfer, whereas facilitation decreases it. Depress-
between these two types of networks. ing synapses are especially optimal for very strong stimuli

Another example when inhibitory networks are more (suprathresholdin networks with strong excitatory synaptic
broadly tuned than excitatory ones is depicted in Fig. 3. On&ouplings[Fig. %a]. This modulatory behavior of excitatory
can see that the accuracy of the population coding is optima&lynapses may have important functional consequences for
for excitatory networks, but that inhibitory networks are information processing in neural networks, e.g., in input lay-
more “flexible” because they are more broadly tuned. Exci-€rS Of the cerebral cortex.

tatory networks perform optimally for a synaptic strength at ' N€ fact that purely inhibitory networks are insensitive to
about 0.15-0.2 of the value of the background noise short-term synaptic dynamics in terms of the population cod-
' ' ' ing can be understood in the following way. By their nature,

The dependence of the Fisher information on the timd"d & S 7 ;
course is presented in Fig. 4. The almost linear dependen rﬁ1h|b_|tory Synapses inhibit ather cells fram firing, reducing
— ] . ) o ) e information transfer between cells. For that reason,
of I on time can change into piecewise linear or nonllnt_earv\,hether there is some process which modulates inhibitory
for sufficiently strong stimuli and for strong synaptic synapses or not, it should not have any dramatic influence on
strength for excitatory networks. In that case, there can be e information transfer. Therefore, the accuracy of coding
very rapid initial growth inl; followed by a subsequent should stay unaffected. This conclusion is also consistent
slower increase. This means that under certain conditions thaith Fig. 3.
processing of information about a stimulus can be very fast. Finally, the results of this paper confirm the previous find-
There are experimental indications that a visual system prdnd [6] that the Fisher information is proportional to the
cesses informatiofface recognitionvery quickly, at times number of neurons encoding information, regardless of the
of the order of hundreds of milliseconds or even fasterdegree of correlations between them. This result suggests
[41,44—48, despite significant conduction delays caused bythat larger networks should be more accufateprinciple) in
many recurrent cortical connections. This may suggest thai€coding information about stimuli.
the visual system uses basically a feedforward mechanism in
early processing, with only a minor contribution coming
from the recurrent connectiofid1]. However, we are unable ACKNOWLEDGMENTS
to address this question explicitly within our approach, since .
the network architecture considered in this paper neglects 1he author thanks Steve Epstein, Larry Abbott, and
recurrent connections, and this fact is clearly a limitation ofNancy Kopell for useful comments on the manuscript. The
the approach. Moreover, our network architecture is uniformVork was supported by NSF Grant No. DMS 9706694.
with respect to the values of synaptic strengjthis either
purely excitatory or purely inhibitojy Mixed networks
could produce a more complex behavior. APPENDIX A
The model for the short-term synaptic dynamics described
by Eqg.(4) neglects the resourc¢aeurotransmittejgecovery.
This process, which typically takeg..~100 ms, can be
incorporated into the model, in E¢4), by substituting sum
aE}‘;llsB(j)exp:—(k—j)r/rrec] for asz(k—1), wherer is the
time bin. Because the duration of the time binris10—-20

ms, exponents with lovy decay rapidly and the major con- > : . X . ; .
tribution to the sum yield the last few presynaptic spikes.l(\'/'l")_>Ctxt1e observation timeMr is large, i.e., in the limit

The analysis in this paper is restricted only to the last presyn- - . .
y bap y presy Probability that the neuroa is at states, (k) at time step

aptic spike, i.e., the terrgg(k—1). This term should capture . = . g
the essence of the influence of the short-term synaptic dy- IS given by E.q(2) n the text. When the conditioft) above
s satisfied, this equation reduces to

namics on the accuracy of coding. The remaining terms irl

the sum would have an effect on the temporal correlations

between neurons, leading to a broadening of peaks in the 1

time-dependent correlation functioffsig. 6). The character- Plsa(k)]= 2

istic width of those peaks, which characterizes the degree of

memory in the network, would be of the order gt/ . . . e
The results of this work suggest that the short-term syn—NOW including the second conditiofii) yields

aptic dynamics has an impact on the coding accuracy only

for purely excitatory networksgFig. 5. Depression and fa- c—0

cilitation have opposite effects. That is, the former increases, tan)'(T) ~—1+2e%C 0, (A2)

and the latter decreases, the accuracy of coding. To gain an

intuitive understanding of this behavior, note that depressionAfter insertion of this into Eq(A1), one obtains the prob-

in general, reduces redundancy in a signal transmited be:,.. - . :
tween synaptically connected cells. On the other hand, facil%lbIIIty of firing PL1] at any time stefk given by

tation enhances redundancy, because it amplifies the subse-
quent signals. Redundancy in a signal always decreases the P[1]~e?(C=0/n, (A3)

In this appendix we show how to reduce the dynamics of
the model presented in this paper to the Poisson dynamics.
Reduction to the Poisson uncorrelated dynamics is obtained
when (i) there is no synaptic connections between neurons,
i.e., in the limitJ—0; (ii) the noise is weak and the input is
subthreshold, i.e., in the limits#-c)/»>1 andc<; and

1+ (2s,(k)— l)tanl‘( 0;7]0) } . (A1)
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and the probability of not firing®?[0] at any time stegk
given by

P[0]~1—e?C~O/n, (Ad)
The probability P[n spikesM] of having n spikes at
time intervalM 7 is given by

M
P[n spike$M]:< n)P[l]“P[O]M”

— ( l\r:l ) e2n(c—6’)/17[1_ e2(c—0)/77]M—n_

(A5)

Next denotingp=e?C€~'7 and using the Stirling formula
k! ~\2mk(k/e)¥, which is valid for large naturdt, we have

Mm" M M \Mon
lim P[n sp|ke$M]=NI||TmW M—n(M—n)

M —

Xp"(1-p)M"

nAn

lim (1—p)M.

M— o

n! (A6)

The next step is to define a new quantiysuch thatM p
=(q. We keep this quantity constant, which means that
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(Mp)"

; /
Thm(l—p)qp

p—0

P[n spike$M Iy~

(Mp)"
n!

efq

~(Mexg2(c—o0)/n)"
B n!

X e—M exp[2(c— 0)/77]_ (A?)
The formula given by Eq(A7) represents the standard Pois-
son proces$39] with the mean firing rate equal to €&fc
—0) 5]l

APPENDIX B

In this appendix we derive E@12) in the main text. This
equation is the joint probability for the activities of many
neurons. However, it is instructive to start first with a single
neuron case.

According to[39], the joint probabilityP of a variable
s(t) at timest;<t,<--.-<ty is given by

P(s1,52, .. ,Sm)=P(s1, ... .S
XP(Sci1y -+ SMmIS1s - - - 4SK),
(B1)
wheres, =s(t,) andP(S¢41, .- . .SulS1, - . .Sy is a condi-

tional probability that variable s assumes values
Ski1s - - - Sy attimesty,q, ... ,ty, provided it had values
Sy, ...,S at previous times,, ... t,. From Eq.(B1), we

must tend to zero. Including that, we obtain easily obtain
P(Sl,SZ, P ,SM):P(Sl, P ,SM,]_)P(SM|S]_, P ’SM*l)
=P(s1, ... Su-2)P(Sm-1lS1, - - - Su-2)P(SmlS1, - - Sm-1)
=---=P(s1)P(s|81)P(s5[51,82) - - - P(smlS1, - - - Sm-1), (B2

which is exactly Eq(5) in the text.

Now let us find the joint probability for two neurons with correlated activity. If we denote an activity of the first neuron by
A, and an activity of the second neuron By whereA={a,,a,, ..

P(A,B)=P(A)P(B|A) and Eq.(B1), we obtain

P(al,bl;az,bz; e ;a.M ,bM):P(al,bl; .
=P(a1,b1; .

X P(byla;,by; ..

=...=P(ay)P(bj|a;)P(ayla;,b;)P(b,|a; ,by;ay)- - - P(ayla,by; ..

X P(byla;,by; ..

..s@m-1,bm-1;am)P(bylag,by; ..

Saw-1,bm-1)P(aulag,by; ..

Sam-1,by-1;am).

.,.au} andB={by,b,, ... by}, then from a formula

Sam-1,0p-1;ay)

Sam—1,by-1)

Sam-1,0p-1;ay)

Sam-1,by-1)

(B3)
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In our network case we assume that the neuant any time  Performing the necessary algebra to the lowest order in den-
t does not “know” anything about the activity of the neu- sity p, yields

ron B at that time. In other words, we assume that there is a

certain small delay in information transfer. This assumption

corresponds to the requirement thgt does not depend on _

ay, and vice versa, so that Ql{cat1=(1-2po0)NQ[0,0, ... .

P(byag,by; ... sak-1,bk-1;a) _ Y o
+2po(1-2pg0) 0 2, 4
=P(bylas,by; ... sak-1,bk-1), (B4)

which after insertion into Eq(B3) gives A 2
xXQ|0,...,— ;§k+A,O, ...,0+0(pp).
P(aq,bq;as,by; .. am,bw)
(C2
=P(a;)P(b;)P(ay|a;,by)P(bylag,by)- - -
X P(aylay,by; ... ;am-1,bpm-1) The last equality can be further simplified for sparse density

po, When 2pqoNp<<1. In this limit we obtain
XP(bylai,by; ... ;apm-_1,bm-1). (B5)

In the case olNy neurons one can easily generalize Eq.
(B5) to o No
Ql{ca}1=QI0, ... .0+2p0 2, dqu{
P[{s(1)}.{s(2)}, ... {s(M)}]

No

A
=TI PIs.()IPLs.(2){s(D)}]- - TG hFAD 4”’(93)- €3
a=1

XPLso(MS(D)}, .- As(M—1)}], We will make use of this formula in Appendix D.

(B6)

wheres, (k) is the activity of theath neuron at time, . This

ak, . APPENDIX D
equation is exactly Eq12) in the text.

In this appendix we sketch how to derive the Fisher in-
APPENDIX C formation [Eqgs. (14) and (16)], as well as the correlation
In this appendix we show how to perform averaging overfunctions[Eqs.(20) and(21)].
the distribution of the centers of the driving inpyts,}. We
assume that the maxima of the drives are independent on

each other and are uniformly distributed with density. 1. Derivation of the Fisher information
Thus, for any quantityQ[ c,(x), . . . ,cNO(x)], depending on
the driving inputs{c,} of all neurons, we have The first step is to rewrite the Fisher informatidgy. (8)],

in a more convenient form,
No

HdX|Po) QLc1(X), . . .y, (X)]

_ J‘l/ZpO
Qlie.}= ~ 11209 #2In P[{s} x]

y E P[{s}:x]
12pg 0 X—o 12pg
:pNof”p 1T dxi) f dx1+f12pdx1)

0 —1/2pp\ i=2 —1/2p, x+a

dP[{s};x]\? &?
X 2 [{S} X]( IX ) __2(2 P[{S}1X]>

XQ[0c;,C3, ... 'CN0]+f, dxy {si OX\ {s}
IP[{s};x]|?

xQ _g(X—Xl)'f'A,CZ, C O, {2 P{s}; x]( X ) ; (DY

+LX dx,Q (X X)) +ACy, .. CNy ) since the joint probabilityP[{s};x] is normalized, i.e.,

2 P[{s};x]=1. Next, using the fact that the joint probabil-
(C1 ity P[{s};x] is represented by E12) in the text, we obtain
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M- No P[{s}:X] IP[sg(H{s(D)}, ... {s(i—1)t;x])2
0= 2 2 B e - STl x
UL P[{s}x]
+% IJZl 521 578 Plsg(D)|[{s(D}, ..., {s(i—1)};xIP[s,(j){s(1)}, . .., 1s(j—1)}x]
Xap[sﬁ(i)l{S(l)}, o As(i—=D)}x] aP[s, () {s(D)}, ---,{S(j—l)};X]_ 02)

oX

The second term on the right hand side of the above equation

vanishes. To see this, note that

é IPsa(D|{s(1)}, ... {s(i—1)}ix]

s5()=0 X
1 & otanfRy(i—1)/7]
=5 Sﬁgzo [2s4(i)—1] ™ =0.
(D3)
Thus one can write the Fisher information as
M
) =72, 1E(x), (D4)
where
No P[{s(D)}, ... {s(M)};x]
100 (x) =
a % Z 1 P[s,(K[{s(1)}, ... {s(k—1)};x]?
« IP[s(K){s(D)}, ... {s(k=1)};x])|?
X
(DY)

One can interpret(Fk) as the Fisher information per time at

kth time step.

a. Single neuron

Using Egs.(D4) and (D5) one can derive Eq9) in the
main text. In this casé&ly=1, and the Fisher information at
time stepk reads

M
100)=" 'Hl P[S(i);x](<9F’[$(k);XJ)2
- & Pls(k);x] Jx

1

. 2
1 (&P[s(k),x])' -

:s%:o P[s(k);x] 28

where we summed over al} but s(k) using the fact that
Ei(l):oP[s(l);x]=1 [see Eq.(D9) below]. Next steps are
straightforward. Using Eq6), summing oveis(k), and us-
ing Eq. (D4), one obtains Eq(9) in the text.

X

b. Many neurons

Since ourl: depends on the driving inputs,} of all
neurons with different locations of maxim{a,}, one must
averagel ¢ over those{x,}. In Appendix C we performed
such averaging for any quantip depending orfc,}. We
can make use of EqC3) from Appendix C and write

No
1e[A]=1¢[0, . .. q+2p02 dgk[ .0,

A
——{HAO, . ,%-FO(pg). (D7)

The first term on the right hand side of H@7) disappears.
This is due to the fact that it does not depend on the driving
inputs, or equivalently tha®[{s(1)}, ... {s(M)}] does not
depend orx, and therefore a derivative with respectxtdn

Eq. (D5) yields zero. Thus, to findlg one must find
(0, ...,0¢,,0,...,0),which is present in the second term
on the right hand side in E4D7). Below we sketch how to
do this.

2. Absence of the short-term synaptic dynamics

First, let us calculatel”) . According to Eq(D5), we have

TSRS 5 PUSM) . fsM)}ix]
Fo&isfi-0  (siii=o PS4(1);x]?
P[5,(1);x] |
X JX
No No
=> > (H P[s4(1); x])
a=1 {s}=s,(1)

Plsg(M){s(D)}, ...,

X }l Pss(2)|{s(1)};x]- -

1

>

x{s(M—l)}?X]) P[s,(1);x]

]\ 2
><(&P[Sa(l),x] (D8)

X

The first summation after the second equality sign is per-
formed over al{s(1)}, ... {s(M)} excepts,(1). All these
sums give 1, since
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! 1 & Ry(k—1)
> PLs([{s(DY, ... dstk—=Dhix]== >, 1+(2$B(k)—1)tam(ﬁ—”=1. (D9)
s5(K=0 2 s4f=0 n
The remaining sum oves,(1) is easy to perform:
) NE é [25.(1)~1] atanr(Ra<0>/n>)2
P& s, (=0 [1+(2s,(1) - DtanH(R,(0)/ 7)] 28
No 2
=S cosk R«(0) Manf[Ra(O)/n])
a=1 X
3 1 <6ca)2 510
&1 P cosi(R,(0)/ ) | X (

whereR,(0)=c,(x)— 6.
The terml?) is calculated as follows

< < PHs(D} ... ,{s<M>};x](aP[sa<2>|{s<1>};x]>2
F1E Pls.2){s(1)}ix]? x

No 1 IP[s,(2)[{s(1)};x]
a=1 {S(El)} SQE(Z) P[Sa(Z)HS(l)}!X] ( 2

2)_
|E:)_

> (H P[sg(2)|{s(1)};x]
{s}—{s(1)}—s,(2) \ B#a

2
(1} P[s,;u);x])

No
X 31;[1 PLsg(3){s(D)}.{s(2)};x]- - - P[sg(M)[{s(1)}, . .. {s(M —1)}])- (D11

By the same argument as above, the summation ovds}allifferent from{s(1)} ands,(2) yields 1. The summation over
s,(2) yields a similar result as before fb&”, with substitutionR,(1) for R,(0). After that, one can write

1
dc,\?

0 1 1 No 1
@) _ . . ; IX
=3 3 > 2 (Bf_[l P[Sﬁ(l)'x]) nzcosl‘?(Ra(l)/n)( %

2

1 1 a+N 1 Jc
= e Pls,(1 ¢ _e
Sa+1§(;)=0 Soﬂr%):O (BEIH Ls(1) ]) nzcosﬁ(Ra(l)/n)< X

1 (&)2([1—tann—a/n)]“‘ (N)[l—tan}‘(—aln)]N1[l+tanr(—6/77)]+
2Np2\ x|\ cosH[(c,— 6)/ 5] 1 cost[(J+c,— 6)/7]

N\ [1+tanh—6/7)]N )
(N)cosﬁ[(NJ+ca—0)/7]] ' (D12

Note that products in EqD12) after the second equality contalh terms. This reflects the fact that thah neuron is
connected tdN other neurons denoted lay+ 1, a+2, ... a+N. The rest of term$( are performed in the similar fashion.

Term &) is equal to(as one can expect by analdgy

@ L g ICL\2 o N)(N)[1—tani(—0/77)]N‘kl[l+tanr(—0/77)]"1[1 t r(li—a) N-kp
= — —tan
P2 &1 ox ) oo \ kel Tke cos[ (kpd+c,— 6)/ 7] 7
ko
(D13)

I-( li_ 0
+tan
7

The key assumption in deriving Eq®10), (D12), and(D13) is N<Ng. As long as the observation tinM 7 is not too long,
i.e., whenM satisfies the conditioN M <N, the formulas foi ,(:k) have the above relatively simple form. This is due to the fact

that for such short times recurrent effects will not yet appear.
Next, using explicit form for the driving input,, [Eq. (10)], we can perform integration df over x according to Eq.

(D7). Only terms with cosh depend on The result is Eq(14) in the text.
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In the limit J—0, the Fisher information for many neurons given by EdS)—(15) reduces toI_F (multiplied by the
number of neurondly) for a single neurofEq. (11)]. To see this, note that fak—0 we have

N N
> > F(9,6,0=0k,, ... ki_q)
k1=0 Ki—1
i—1

1+tand — —|| |1—tanH — — =[] 2N=2Ni-1), (D14)
7 7 =1

3. Inclusion of the short-term synaptic dynamics

Slightly more complicated is calculationat when short-term synaptic dynamics, i.e., wteef0, is included. Repeating
the same steps as before, one obtains(EE@). in the text. For the sake of consistency, we show below thatf E).reduces
to Eq.(14) in the limit a—0. In this limit theG" function does not depend dn} indices, and we are able to sum oyes.

We have

1 1 1 1 1 1 1 1
E T 2 E t 2 H(i)(n,J,a=0,9;{k},{n})G(i)(17,J,a=0,9;m,ki,2)= 2 2 2 G(I)(’U J,a
m=0 k,=0 ki—=0 n;=0 nj_»,=0 m=0 k;=0 i—»=0
1 1
=00imki_) X - X HO(7,3,a=00:{k},{n}). (D15)
n1:0 ni,zzo

The sums ovef{n} can be executed as follows:

kj—1d— 6\ 1% kj—1J—6)\]'%
1+tanf ———|| |1—tanf ———
n n
1 . —n
ni_,J—6\|" n_.J—e\] "
> 1+tan|‘(;” [1—tan|‘(;” )
ﬂj:0 7] 7’

kj—1J—6\]4 kj—1d—0\]*"
Lttanf = —|| | 1-tant —— : (D16)

i—2

I1
j=1

i—2

<]1

j=1
i-2

:Zi—Z
4

1
2 E HO(7,3,2=0,6;{k}.{n})=

nj—2=0

If we now identify indexm with k; _; and insert the result of the summation into Etf), we obtain Eq(14) with N=1.

4. Derivation of the correlation functions
Analogically, one can determins,(k)) and(s,(k+j)ss(k)). As an example, we show how to deri{&,(k)). According
to a definition we have

(Se(K)= 2 - > o X s (KP{s(D}, ... {s(M)};x]. (D17)
{s(1)} {s(k)} {s(M)}

Invoking the same argument as bef¢E. (D9)], we notice that all sums oveis(M)}, ... {s(k+1)} yield 1. Thus the
remaining sums read

No
<sa<k>>={s(21)} - {S(kEl)} H P[ss(1);x]P[sa(2)|{s(1)};x]- - - P[sg(k—1)[{s(1)}, . .. {s(k—2)};x]

> 3, (k—1)s,(k—1)+c,— 0
(D18)

1
X—=| 1+tanh
2 7

Performing the first sum oveis(k—1)} yields
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No 1
(sa(k)>={s(21)} ...{S(ZZ)} (;’[1 PLsg(1):x]- - Plsg(k=2){s(L)}, - {s(k=3)}ix] | 5
~ N-k _ k

NN > Jay(k—2)s,(k—2)— 6 > Juy(k—2)s,(k—2)— 6
XE 1+tan ! 1—tanh

k=0 | k 7 7

(N=K)J+c,— 6

X 1+tan)’(7 : (D19)

We see a similar pattern as before in deriving the Fisher information. Now, by analogy, it is not difficult to write the whole
sum, and the result is E@R3) in the text. In a similar manner, one can determiag(k+ j)sz(K)).
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