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Fisher information and temporal correlations for spiking neurons with stochastic dynamics

Jan Karbowski
Center for Biodynamics, Department of Mathematics, Boston University, Boston, Massachusetts 02215

and Center for Theoretical Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland
~Received 25 June 1999!

Population coding accuracy can be studied using Fisher information. Here the Fisher information and
correlation functions are determined analytically for a network of coupled spiking neurons with a more general
than Poisson stochastic dynamics. It is shown that stimulus-driven temporal correlations between neurons
always increase the Fisher information, whereas stimulus-independent correlations need not do so. Addition-
ally, we find that for subthreshold stimuli there is some nonzero level of noise for which network coding is
optimal. We also find that the Fisher information is larger for purely excitatory than for purely inhibitory
networks, but only in a limited range of values of synaptic coupling strengths. In most cases the dependence of
the Fisher information on time is linear, except for excitatory networks with strong synaptic couplings and for
strong stimuli. In the latter case this dependence shows two distinct regimes: fast and slow. For excitatory
networks short-term synaptic depression can improve the coding accuracy significantly, whereas short-term
facilitation can lower the coding accuracy. For inhibitory networks, coding accuracy is insensitive to short-term
synaptic dynamics.

PACS number~s!: 87.18.Sn, 84.35.1i, 87.19.Dd, 87.19.La
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I. INTRODUCTION

Information-theoretic approaches in computational neu
science have become more popular recently@1–8#. One of
the reasons for this is that information theory can provide
only qualitative but also quantitative descriptions of neu
encoding. Neural encoding can be studied by measuring
ral responses in sensory systems as a function of an ext
stimulus. Based on those responses one can estimate
was the value of encoded variable@2,10–15#; for a review,
see Ref.@16#.

In the presence of noise in a neural network it is not triv
to decode accurately some variablex from the activity pat-
tern $s% of the population of neurons. On a trial to trial bas
there will be a discrepancy between a true valuex of a stimu-
lus and its estimated valuexest($s%). Since human and ani
mal performances in sensory and motor tasks are often
reliable, one can anticipate that the nervous system usu
tries to minimize that discrepancy.

In information theory there are useful quantities for inve
tigating the accuracy of population coding. One of them
the standard mutual information between the input and o
put of the system; a second, less often used quantity, is ca
Fisher information@17#. Both of these quantities measure t
degree of correlation between an input and an output.
Fisher information measures information about a given va
of the stimulus, whereas the mutual information measu
information about a distribution of possible values. In th
work we consider the Fisher information.

The Fisher informationI F(x) is a measure of the encod
ing accuracy of some quantityx, because it is related to th
lower bound of the variance of the estimatorxest, which is
equal to^(xest2x)2&, by an expression

^~xest2x!2&>
1

I F~x!
, ~1!

where ^xest
n &5($s%P@$s%;x#xest

n ($s%); i.e. symbol^xest
n & de-
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notes an averaging of the estimatorxest
n ($s%) over the activ-

ity of neurons$s% represented by some distribution functio
P@$s%;x#, given a stimulus valuex ~in this paperx is a scalar
variable!. The right hand side of the above inequality, whi
is valid for all unbiased estimation methods, i.e., wh
^xest&5x @17#, is known as the Cramer-Rao bound. In ge
eral, it is not obvious that this lower bound can be reached
an arbitrarily chosen decoding scheme. Nevertheless, t
exist some examples where this is possible@15,18#. From Eq.
~1!, we see that a population of neurons can optimally~in
principle! extract the value of a stimulus by maximizingI F .

Recently the question of the relationship between popu
tion coding accuracy and correlations among neurons
tracted much attention@19–25#. In cases where one conside
the average activity of neurons, neglecting the temporal p
tern of spikes, the answer to this question turned out to
inconclusive both experimentally@19,20,24# and theoreti-
cally @6,26#. That is, there examples were found of increas
and decreased accuracy of population coding by correlati
However, when one considers the fine temporal structure
spiking neurons, there are experimental indications that
multaneous firing, i.e., precise temporal correlations, may
tually help in coding@21–23,25#.

This paper studies the relation between temporal corr
tions among neurons and the accuracy of population cod
using the concepts of correlation functions and Fisher inf
mation. We derive explicit expressions for those quantities
the sparsely connected neural network. Additionally, we
termine which of the factors—noise, the type of synap
coupling, short-term synaptic dynamics, and the size of n
ronal population—increase the Fisher information~hence
improve the coding accuracy!, and under what circum-
stances. The Fisher information was studied before in
context of the accuracy of population coding@4–6,8,9#.
Those papers either did not consider correlations betw
neurons@4,5# or take into account correlations, but negle
the fine temporal structure of neural activity@6,8,9#. In con-
trast to those papers, we investigate a stochastic netw
4235 © 2000 The American Physical Society
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4236 PRE 61JAN KARBOWSKI
model of spiking coupled neurons with a more general th
Poisson dynamics. Specifically, we do not assume any
ticular type of correlation for noise between neurons. Inste
we assume that the network dynamics is governed by a
tain stochastic process caused by some intrinsic noise in
network, as well as by an external stimulus. The result
correlations between neurons consist of stimulus-driven
stimulus-independent correlations. The latter are the resu
intrinsic ‘‘noisy’’ dynamics mediated by synaptic coupling
In the approaches of Abbott and Dayan@6# and Zhang and
Sejnowski @8#, one cannot distinguish between these t
types of correlations. The network approach taken in t
paper provides a natural distinction between them.

The main result of this paper is to show that there is
monotonic relation between stimulus-driven temporal cor
lations and the accuracy of population coding. This me
that the stronger these correlations, the larger the Fishe
formation and more accurate the coding. However, ther
no systematic dependence between stimulus-indepen
temporal correlations and the Fisher information if the dr
ing input is subthreshold. For suprathreshold inputs, th
correlations always lower the coding accuracy. The find
that stimulus-driven temporal correlations between neur
improve the accuracy of coding is consistent with expe
mental results of Danet al. @25#.

Additionally, it is shown that there is some nonzero lev
of noise for subthreshold stimuli for which the Fisher info
mation is optimal. This behavior resembles the phenome
of the ‘‘stochastic resonance’’ found in some parts of t
nervous system@27–30#; for a review, see Ref.@31#.

Another finding is that there is a relationship between
type of synaptic coupling and the accuracy of the codi
The Fisher information has a maximum for positive values
synaptic couplings, suggesting that excitatory networks p
form better than inhibitory networks. However, inhibito
networks are more broadly tuned, which may, in cert
cases, be more advantageous. We made computation
networks with homogeneous couplings between neurons
ther purely excitatory or purely inhibitory. This greatly sim
plifies the analysis, which is already complicated.

The dependence of the Fisher information on the ti
course is linear for inhibitory networks regardless of t
strength of synapses and stimulus. Excitatory networks s
a different behavior. For weak coupling and weak stimu
the dependence is linear, whereas for strong coupling w
strong stimuli there are two distinct regimes. The initial r
gime exhibits very fast growth, while a subsequent regi
shows slower growth. Possible functional consequence
this behavior are discussed in Sec. V.

The impact of short-term synaptic dynamics on the Fis
information is also studied. It is found that synaptic depr
sion can improve the coding accuracy by an order of mag
tude for a network of purely excitatory cells with sufficient
strong coupling and for strong stimuli. On the other ha
synaptic facilitation can decrease the coding accuracy fo
population of excitatory cells, but not in such a drama
way. Short-term synaptic dynamics does not have any
ticeable influence on coding for purely inhibitory network
We also confirm previous findings that the Fisher inform
tion grows linearly with the size of the network@6#, and
n
r-

d,
r-

he
g
d

of

is

a
-
s

in-
is
ent
-
e

g
s

-

l

n

e
.
f
r-

n
for
i-

e

w
,
th
-
e
of

r
-
i-

,
a

o-
.
-

additionally, that it is optimal for narrowly tuned driving
inputs @8#, regardless of the fact whether neurons are co
lated or not.

The basic ideas and results are provided in the main
of the paper. Details about particular derivations are p
sented in the Appendixes.

II. NETWORK DYNAMICS

In the presence of noise in a network, the output o
given neuron is represented by the probability that the n
ron will fire. This probability, in general, depends on th
state of the present and past activities of all neurons in
network; therefore, it is a conditional probability. We mod
the probability that neurona is in statesa(k11) at time step
k11 by a discrete-time model with a length of a time stept
as

P@sa~k11!u$s~1!%,$s~2!%, . . . ,$s~k!%;x#

5
1

2 S 11@2sa~k11!21#tanhFRa~k!

h G D . ~2!

For our purposes, it is sufficient to assume that the ac
ity of neurons in the network can be adequately described
a two-state neuron model, i.e.,sa(k)51 if neurona fires at
time stepk, and sa(k)50 if it does not @32,33#. Symbol
$s(k)% represents the activity of all neurons in the network
time stepk. The time unitt can be of the order of an effec
tive membrane time constant or refractory period. The
rameterh is a measure of noise in the network. Forh50 the
network is noiseless, whereas forh°` the noise is maxi-
mal. In the latter limit the probability of firing@Eq. ~2!#, at
any given time stepk is always equal to 1/2. The choice fo
the probability given by Eq.~2! is motivated by the fact tha
it has a sigmoidal shape as a function ofRa(k). This type of
stochastic dynamics was pioneered in condensed m
physics in studying Ising-type models with thermal noi
~for example, cf. Ref.@34#!. A later, similar dynamics was
used by others in other contexts, namely, to study temp
associations@35# and correlations in the Markov-type neur
model @36#.

The functionRa(k) in Eq. ~2! contains the entire infor-
mation about the activity of all other neurons at earlier tim
up to k step. We representRa(k) in a standard way:

Ra~k!5 (
bÞa

J̃ab~k!sb~k!1ca~x!2u. ~3!

Hereca(x) is a time-independent driving input or a driv
to the neurona caused by an external stimulusx; u is a
threshold for firing~when noise is absent!, identical for all
neurons; andJ̃ab(k) is a time-dependent synaptic couplin
from the presynaptic neuronb to the postsynaptic neurona.
We choose this coupling to be time dependent because
want to include the effect of short-term synaptic plastic
@37,38#. The synaptic coupling is modeled in the form

J̃ab~k!5@12asb~k21!#Jab . ~4!
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PRE 61 4237FISHER INFORMATION AND TEMPORAL . . .
This form mimics short-term synaptic dynamics effec
through the presence of a parametera(uau,1). Negative val-
ues ofa correspond to synaptic facilitation, while its positiv
values correspond to synaptic depression. Equation~4!
shows that when the presynaptic neuronb fires at time step
k21, the synaptic strength from neuronb to neurona at
time stepk will be reduced~or amplified ifa,0) by a factor
(12a). Our model of the network dynamics is not Marko
ian when the short-term synaptic dynamics is taken into
count. We recover Markovian dynamics in the limita°0.

In Eq. ~4!, time-independent couplingJab is represented
by Jab5J(g51

N da,b1g , which means that we assume th
each presynaptic neuronb is connected toN postsynaptic
neuronsb11, . . . ,b1N, with the same strengthJ, whereN
is a number of synaptic connections. Additionally, we a
sume that the number of these connections for a given n
ron is much smaller than the number of neuronsN0 in the
network, i.e.,N!N0. Notice that the synaptic coupling i
asymmetric; that is, ifJabÞ0, thenJba50.

In Appendix A we show that the dynamics represented
the probability in Eq.~2! can be reduced to the Poisson~un-
correlated! dynamics for a subthreshold driving input in th
following limits: ~i! no synaptic coupling,J°0; ~ii ! weak
noise, (u2c)/h@1; and ~iii ! long observation time,
Mt°`.

III. FISHER INFORMATION

First we determine the Fisher information for a sing
neuron. This case is easier to analyze, and will enable u
obtain some insights into the more complicated case of m
neurons. The latter case is analyzed subsequently.

A. Single neuron

In order to calculate the Fisher information contained i
random signals(1),s(2), . . . ,s(M ) given the parameterx,
whereM is the number of time steps, one must determine
joint probability that a neuron at any timekt<Mt was at a
certain state s(k). The joint probability
P@s(1),s(2), . . . ,s(M );x# given inputx, can be written in
general as@39#

P@s~1!, . . . ,s~M !;x#5P@s~1!;x#P@s~2!us~1!;x#•••

3P@s~M !us~1!, . . . ,s~M21!;x#,

~5!

wheres(k) is defined as before. This equation is derived
Appendix B. The form of the conditional probabilit
P@s(k)us(1), . . . ,s(k21);x#, that the neuron fires at tim
step k, indicates that it may depend on this neuron’s p
activity. In the present case, however, there is no hist
dependence and therefore that probability reduces to

P@s~k!us~1!, . . . ,s~k21!;x#

[P@s~k!;x#

5
1

2 S 11@2s~k!21#tanhFc~x!2u

h G D . ~6!
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Taking the above into account, one can rewrite Eq.~5! as

P@s~1!, . . . ,s~M !;x#5)
i 51

M

P@s~ i !;x#, ~7!

which greatly simplifies further analysis in determining t
Fisher information. The Fisher information can be defined
@17#

I F52 (
s(1), . . . ,s(M )

P@s~1!, . . . ,s~M !;x#

3
]2 ln P@s~1!, . . . ,s~M !;x#

]x2
. ~8!

Substituting Eqs.~6! and ~7! into Eq. ~8! and performing
the necessary algebra yields~cf. Appendix D!,

I F5
Mt

h2 cosh2
~c2u!

h

S ]c

]xD 2

. ~9!

The drivec is a function of a stimulusx. In Sec. IV it is
shown that the average firing rate is an increasing function
c. This implies thatc should depend onx in a fashion quali-
tatively similar to the way the firing rate depends onx. It is
experimentally well established@40# that the latter depen
dence, known as a tuning curve, often has a pronoun
maximum. Guided by this, in this paper, we assume the
lowing shape for the driving input of the neurona:

ca~x!55
A

s
~x2xa!1A, xa2s<x<xa

2
A

s
~x2xa!1A, xa<x<xa1s

0 otherwise,

~10!

whereA is the amplitude of the stimulus-induced drive and
the same for every neuron~this amplitude is proportional to
a contrast of a stimulus, and therefore we will call it al
contrast interchangeably!, s is a width of ‘‘sensitivity’’ of
the driveca on a stimulusx (s is the same for every neu
ron!, and finallyxa is the value of a stimulus for which th
drive is maximal. One can also views as the paramete
characterizing the size of a ‘‘receptive field’’ of each neuro

Using the expression on the drive@Eq. ~10!#, one can
rewrite Eq.~9!. If we additionally averageI F over different
values x0 of stimulus for which the drive is maxima
@x0°xa in Eq. ~10!#, we obtain

Ī F5
2AMtr0

hs F tanhS A2u

h D1tanhS u

h D G , ~11!

where Ī F5*
21/2r0

1/2r0 dx0r0I F , and averaging overx0 is per-

formed with a uniform distributionr0. Such averaging may
seem artificial in the case of a single neuron; however,
many neurons it is a necessity, since different neurons ar
general, exposed to different driving inputs.
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4238 PRE 61JAN KARBOWSKI
Formula~11! shows that, for a subthreshold driving inp
(A,u), the Fisher information takes a maximal value for
nonzero values of noiseh. In the limitsh°0 andh°`, Ī F
vanishes. As we will see in Sec. III B, a similar conclusi
will be valid for the case of many correlated neurons. N
that a scalingĪ F;s21, proposed by Zhang and Sejnows
@8# in the firing rate type model, is also valid here; it will b
valid in the case of many neurons as well. The latter dep
dence says that narrowly tuned stimulus-driven inputs
more advantageous in terms of information processing@4#.

B. Many neurons

The joint probability P@$s(1)%, . . . ,$s(M )%;x# in the
case of many coupled neurons can be written in genera
@39#

P@$s~1!%, . . . ,$s~M !%;x#

5 )
a51

N0

P@sa~1!;x#P@sa~2!u$s~1!%;x#•••

3P@sa~M !u$s~1!%, . . . ,$s~M21!%;x#, ~12!

where P@sa(k)u$s(1)%, . . . ,$s(k21)%;x# is given by Eq.
~2!. The above form of the joint probability assumes that
activity of a given neuron at any given time depends on
past activities of all other neurons, and does not depend
those activities at that given time. In other words, we ta
into account some history-dependent correlations in the
work. In our particular model, Eq.~12! can be further
simplified by noting that, in fact, we
have P@sa(k)u$s(1)%, . . . ,$s(k21)%;x#[P@sa(k)u$s(k
22)%,$s(k21)%;x#, which is a consequence of the assum
form of the synaptic dynamics@compare Eqs.~2!–~4!#. To be

FIG. 1. Dependence of the Fisher informationĪ F on the ampli-
tudeA ~contrast! of the driving input without the short-term synap

tic dynamics (a50). Note thatĪ F is a monotonic, growing function
of A. The solid line represents the excitatory network withJ50.2.
The dashed line corresponds to the inhibitory network withJ5
20.2. Other parameters areM5100, u5s5t51.0, N051000,
andN510.
e
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more explicit, the state of each neuron ink11 time step
depends on the pattern of synaptic couplings in thek time
step, which in turn depends only on the state of the neur
in the k21 time step. This means that every neuron c
‘‘remember’’ what happened in the network up to two tim
steps back. Derivation of Eq.~12! is presented in Appendix
B.

Having the joint probability, one can determine the Fish
information contained in the activities of the population
neurons in the network. As before, we averageI F over a
uniform distributionr0 of all $xa% for which drives are maxi-
mal. We obtain

FIG. 2. Dependence of the Fisher information on the noise
the network. In both figures the solid line corresponds to an inh
tory network, and the dashed line to an excitatory network.~A! The
case for the subthreshold driving input. Notice the pronoun
maxima for some nonzero level of noise. An excitatory netwo
exhibits additional smaller maximum.~B! The case for the suprath

reshold driving input. Notice thatĪ F is maximal for noiseless net
works and decays with an increasing level of noise. Parame
used:~A! A50.5 andJ50.3 for the excitatory network, andJ5
20.3 for the inhibitory network.~B! A51.2, and the synaptic cou
plings are the same as in~A!. Other parameters are exactly the sam
as in Fig. 1.
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Ī F5t(
i 51

M

Ī F
( i ) , ~13!

whereĪ F
( i ) is the averaged Fisher information per time at tim

stepi. In Appendix C we sketch how to perform such ave
aging. In the limita°0, i.e., when the short-term synapt
plasticity is absent, and for low densityr0 , Ī F

( i ) is given by

Ī F
( i )~a50!5

AN0r0

2N( i 21)21hs
(

k150

N

••• (
ki 2150

N

3F1
( i )~h,J,u;k1 , . . . ,ki 21!

3F tanhS ki 21J1A2u

h D
2tanhS ki 21J2u

h D G1O~r0
2!, ~14!

with

F1
( i )~h,J,u;k1 , . . . ,ki 21!

5)
j 51

i 21 S N

kj
D F11tanhS kj 21J2u

h D Gkj

3F12tanhS kj 21J2u

h D GN2kj

, ~15!

where integerk050. Details of derivation of Eq.~14! are
presented in Appendix D. The key assumption in deriv
Eq. ~14! is that the observation timeMt is not too long, so
that one can neglect ‘‘recurrent’’ effects. From a techni
point of view, this means that our expressions are valid

FIG. 3. Dependence of the Fisher information on the syna
strength. The solid line corresponds toA50.5 ~subthreshold input!,
and the dashed line toA51.2 ~suprathreshold input!. Note that the

maxima of Ī F fall to positive values of the synaptic couplings r
gardless of the magnitude of the driving inputs. Also note a st

decay ofĪ F for positive values of the synaptic couplings. The bac
ground noise value ish51.
-

g

l
s

long asM satisfiesNM,N0. This limit greatly simplifies the
analysis, and computation ofI F

(k) can be controlled at any
time stepk satisfyingk,M .

The Fisher information grows linearly with the number
neuronsN0 in the network~keeping the number of connec
tions N per neuron constant!. This suggests that the codin
accuracy improves with increase of the size of the neuro
population. The same conclusion was reached in Ref.@6# for
firing rate models. Also note that the Fisher information
optimal for narrowly tuned driving inputs~as before!, be-
cause of the scalingĪ F;s21.

The dependence of the Fisher information on the am

ic

p

-

FIG. 4. Dependence of the Fisher information on the tim
course for excitatory~A! and inhibitory~B! networks. In both cases
time is measured in units equal tot. ~A! For not too strong synaptic
couplings (J50.1) and weak driving inputs (A50.5), the depen-
dence is almost linear~solid line!. When the input and synapse
become strong (A51.5, J50.3; dashed line! this dependence ha
two distinct regimes: fast initial growth and later a more slo

growth. ~B! Dependence ofĪ F on time for inhibitory networks is
linear even for large driving inputs and strong synaptic coupli
the solid line corresponds toA50.5 andJ520.3, and the dashed
line corresponds toA51.5 andJ521.0. Inhibitory networks, in
general, provide more information about a stimulus~note the dif-
ference in scale!.
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4240 PRE 61JAN KARBOWSKI
tude of the drive, noise, synaptic strength, and time was
termined numerically using Eqs.~14! and~15!. An important
finding, which will be used later, is thatĪ F grows with the
amplitudeA of a drive~contrast!, which means that the stron
ger the stimulus the better it is for coding. This depende
is depicted in Fig. 1.

Note that the dependence ofĪ F upon noise has a pro
nounced maximum for some finiteh if the driving input is
subthreshold@Fig. 2~a!#. For a suprathreshold drive@Fig.
2~b!#, the Fisher information has a maximum forh50 and
decreases monotonically with increasing noise. These be
iors are the same as in the case of a single neuron@see Eq.
~11!#. In both cases, however, the noise ‘‘window’’ fo
which the network encodes stimulus optimally is narrow.

Dependence of the Fisher information on the synap
strength~Fig. 3! reveals an interesting behavior. The peak
Ī F falls to positive values of the synaptic couplingJ, which
shows that excitatory networks perform better in terms of
population coding. However, this is the case only in the
cinity of the maximum. For positive values ofJ away from
that maximum,Ī F can be much smaller than for negativeJ.
Thus excitatory networks are advantageous over inhibit
ones, but only in a limited range of values of the synap
couplings.

Figure 4 shows thatĪ F is a growing function of the ob-
servation timeMt. Again, we find a distinct behavior fo
excitatory and inhibitory networks. For excitatory networ
@Fig. 4~a!#, when the drive is subthreshold and the synap
coupling not too strong,Ī F depends almost linearly on time
However, when the drive is suprathreshold and coupl
stronger, the growth ofĪ F has two phases: the initial phase
very fast, andĪ F reaches substantial values quickly; and t
second phase is much slower. For inhibitory networks@Fig.
re

f-

b

n

e
-

e-

e

v-

c
f

e
-

y
c

c

g

4~b!#, Ī F grows almost linearly with time regardless of th
magnitude of the drive and coupling.

Computation of the Fisher information when the sho
term synaptic dynamics is included is more complicated
can be made a little easier in the case of a network with v
sparse connections for whichJab5Jda,b11, i.e., when each
neuron is connected only to one of the remaining neuro
For such a network one can find (r0°0)

Ī F
( i )~a!5

AN0r0

22(i 22)hs
(

m50

1

(
k150

1

••• (
ki 2250

1

(
n150

1

•••

3 (
ni 2250

1

H ( i )~h,J,a,u;$k%,$n%!

3G( i )~h,J,a,u;m,ki 22 ,ni 22 ,ni 23!1O~r0
2!,

~16!

where functionsG( i ) andH ( i ) are given by

G( i )~h,J,a,u;m,ki 22 ,ni 22 ,ni 23!

5S 11tanhFki 22J~12ani 23!2u

h G D m

3S 12tanhFki 22J~12ani 23!2u

h G D 12m

3F tanhS mJ@12ani 22#1A2u

h D
2tanhS mJ@12ani 22#2u

h D G ~17!

and
H ( i )~h,J,a,u;$k%,$n%!5)
j 51

i 22 S 11tanhFkj 21J~12anj 22!2u

h G D kj S 12tanhFkj 21J~12anj 22!2u

h G D 12kj

3S 11tanhFnj 21J~12akj 22!2u

h G D nj S 12tanhFnj 21J~12akj 22!2u

h G D 12nj

. ~18!
a-
r-
m
on
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In the above expressionsk215k05n215n050. One can
check that in the limita°0, Eq. ~16! reduces to Eq.~14!
with N51 ~for this see Appendix D!. Notice that also here

Ī F;N0, indicating that larger populations of neurons a
more accurate in coding.

As before, Eq.~16! has been solved numerically for di
ferent magnitudes of the synaptic plasticitya. The results are
displayed in Fig. 5. For excitatory networks@Fig. 5~a!# there
can be a substantial increase in the Fisher information
increasing the depression amplitudea(a.0), provided the
synaptic coupling is strong enough. For example, wheJ

50.2 (A50.5), Ī F stays almost constant regardless ofa.
However, when the coupling is increased, one can notic
dramatic increase inĪ F ; for J52.3 and threshold-equal driv
y

a

ing input (A51.0, u51.0) there is 50% increase inĪ F ob-
tained by changinga from zero toa50.8; for J54.0 and
suprathreshold driving input (A51.2, u51.0), there is
500% increase inĪ F @Fig. 5~a!#. Short-term synaptic facili-
tation (a,0) has the opposite effect on the Fisher inform
tion; it reducesĪ F , although not so dramatically. The su
prising result is that for inhibitory networks the short-ter
synaptic plasticity does not have any significant influence
the Fisher information@Fig. 5~b!#.

IV. CORRELATION FUNCTIONS

It this section we study the relationship between tempo
correlations among neurons and the accuracy of informa
processing. One would like to know whether temporal c
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relations are advantageous or harmful for this task. In or
to answer this question we calculate correlation functio
and compare them with the Fisher information.

The correlation functionCab between activities of the
neuronsa andb is defined in a standard way,

Cab~k, j !5^sa~k1 j !sb~k!&, ~19!

where symbol^•••& denotes averaging over noise, whic
formally means averaging with respect to the joint proba
ity given by Eq.~12!. This correlation function has the fol
lowing interpretation. It is a measure of the probability th
the neurona fires at time stepk1 j , provided the neuronb
fired at time stepk. Note thatCab takes values only betwee
0 and 1, since 0<sa(k)<1.

The computed below correlation functions are nonstati
ary ones, since we do not assume that the network is in
equilibrium state~although such a state is reached after so
initial time!. Also, formulas below were derived for the ca
g
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when the short-term synaptic dynamics is absent (a°0).
For delay correlation function, i.e., forj >1, we obtain

Cab~k, j !5
1

2N(k1 j 21)11N
(

n150

N

••• (
nk1 j 2150

N

~N2nk!

3F11tanhS nk1 j 21J1ca2u

h D G
3F11tanhS nk21J1cb2u

h D G
3F1

(k1 j )~h,J,u;n1 , . . . ,nk1 j 21!1O~r0!,

~20!

where the functionF1
(k1 j ) was defined before in Eq.~15!. For

equal time correlation function, i.e., forj 50, we obtain
Cab~k,0!5
1

22N(k21)12 (
na,150

N

(
nb,150

N

••• (
na,k2150

N

(
nb,k2150

N

F2
(k)~h,J,u;$na%,$nb%!F11tanhS na,k21J1ca2u

h D G
3F11tanhS nb,k21J1cb2u

h D G1O~r0!, ~21!

where

F2
( i )~h,J,u;$na%,$nb%!5)

j 51

i 21 S N

na, j
D S N

nb, j
D F11tanhS ~na, j 211nb, j 21!J2u

h D Gna, j 1nb, j

3F12tanhS ~na, j 211nb, j 21!J2u

h D G2N2na, j 2nb, j

. ~22!
rge
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In Eqs. ~20! and ~21!, symbol Cab denotes averagingCab
over all $xg% exceptxa and xb . The equal time correlation

function Cab(k,0) is a measure of coincidence in the firin
of the two neuronsa and b. This fact makes it a suitable
quantity for a comparison with the Fisher information, i.
with the accuracy of the population coding. An interesti
fact to note is that the correlation functions between the
neuronsa andb in Eqs.~20! and ~21! are composed of the
sum of the two products: factors with the driving inputsca
and cb , and factors withF1 and F2 functions. The former
factors are directly related to a stimulus, whereas the la
are the network contributions. In the limitJ°0, i.e., without
coupling, only the stimulus-dependent part remains; su
over theF1 and F2 functions yield a numerical factor@for
this see Eq.~D14! in Appendix D#.

The correlation functions@Eqs. ~20! and ~21!#, are non-
zero even when a stimulus is absent, i.e., whenca5cb50.
We call these types of correlations stimulus-independent
relations. Their existence lies in the fact that there is so
intrinsic noiseh in the network which causes some bac
ground spontaneous activity, i.e., neurons fire occasion
even without an external input. If the excitatory synap
,

o

er

s

r-
e

ly

coupling between neurons is strong there can be quite la
stimulus-independent correlations. For weak coupl
(J°0) and for the noiseless network (h°0), stimulus-
independent correlations are very weak. This can be s
formally by noting that factors„11tanh@(nJ2u)/h#…°0
whenh°0.

When a stimulus is present the drives are nonzero, s
they reflect the appearance of a stimulus. The correla
functions are monotonic functions of the drives@see factors
with tanh containingca and cb in Eqs. ~20! and ~21!#, i.e.,
the larger the drives the stronger the correlations betw
neurons. The correlation is maximal whenca and cb take
their maximal values. This can happen only whenxa andxb ,
the values of a stimulus for which driving inputsca andcb
are maximal, are identical. That is, correlation is proportio
to the degree of overlap between ‘‘receptive fields’’ca and
cb of the two neurons. This type of correlation is termed
stimulus-driven correlation. It is important to note that o
cannot, in general, decompose correlation functions int
sum of stimulus-independent and stimulus-dependent p
~this is possible only for very weak stimuli; then one c
perform a Taylor-series expansion and drop higher or
terms!.
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In Fig. 6, correlation function defined asCab( j )

[(1/M )(k51
M Cab(k, j ) is plotted for different values of the

synaptic couplingJ. One can see a pronounced peak
Cab( j ) for j 50 for excitatory networks, indicating a stron
dependence between neurons. For inhibitory networks
peak is much smaller. The half-width of all peaks is appro
mately equal to 2t, which is consistent with the degree o
‘‘memory’’ present in the network~cf. Sec. V!.

In Fig. 7, peaksCab(0) of the correlation function are
plotted as a function of the amplitudeA of the driving inputs.
This dependence is monotonic, similar to the dependenc
Ī F on A. These two facts indicate that the Fisher informati
Ī F is proportional to the degree of correlations in a netwo

FIG. 5. Dependence of the Fisher information on the short-te
synaptic plasticity parametera for excitatory~A! and inhibitory~B!
networks.~A! The solid line corresponds toJ54.0 andA51.2, the
dash-dotted line toJ52.3 andA51.0, and the dashed line toJ
50.2 andA50.5. Notice a dramatic increase in the Fisher inform
tion for strong stimuli and strong synaptic coupling.~B! The solid
line corresponds toJ520.2 andA50.5, the dashed line toJ5
21.5 and A50.9, and the dash-dotted line toJ524.0 and A
51.2. Notice that the Fisher information stays~almost! intact re-
gardless of the amplitude of the short-term synaptic dynamica.
Background noise:h51.
f

at
-

of

,

if those are stimulus-driven correlations. This result is one
the main results of this paper. Also note that correlatio
between two neurons are stronger when the locations of
maxima of their drives (xa andxb) are closer. That is, cor
relations increase with the degree of overlap of their rec
tive fields.

The relationship between correlations and noise displ
an interesting feature~Fig. 8!. For excitatory networks@Fig.
8~a!# correlations are optimal for some nonzero level of no
both for subthreshold and suprathreshold driving inputs.
inhibitory networks @Fig. 8~b!#, correlations always grow
with an increasing level of noise, initially quickly and late
more slowly, regardless of the value of the drives. The
results indicate that the probability of simultaneous firing
cells in an excitatory network is large for some intermedi
noise, whereas for cells in inhibitory networks this probab
ity grows with an increasing level of noise. This type
behavior is different from the dependence of the Fisher

-
FIG. 6. Correlation functionCab(t) between two arbitrary neu

ronsa andb as a function of timet ~in t units! for excitatory~A!
and inhibitory ~B! networks.~A! The solid line corresponds toJ
50.2 andA50.5, and the dashed line toJ50.15 andA50.5. ~B!
The solid line corresponds toJ520.2 andA50.5, the dashed line
to J520.1 andA50.5, and the dash-dotted line toJ520.2 and
A51.2. Note that neurons in the inhibitory networks are far le
correlated.
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formation on the noise~Fig. 2!, suggesting that there is n
explicit relation betweenĪ F and the stimulus-independen
correlations. This result is also one of the main results of
paper.

We also derived the average firing rate, which is prop
tional to ^sa(k)&. For very low densityr0 we obtain

^sa~k!&5
1

2N(k21)11 (
n150

N

•••

3 (
nk2150

N F11tanhS nk21J1ca2u

h D G
3F1

(k)~h,J,u;n1 , . . . ,nk21!1O~r0!, ~23!

FIG. 7. The maxima of the correlation functionCab(0) as a
function of the amplitudeA of the driving inputs. This dependenc

is monotonic, similarly as the dependenceĪ F uponA ~compare Fig.
1!. ~A! Excitatory networks: the solid line corresponds toJ50.2
with xa2xb50.8, and the dashed line toJ50.2 with xa2xb

50.1. ~B! Inhibitory networks:J520.2, xa2xb50.8 ~solid line!,
J520.2, xa2xb50.1 ~dashed line!. The differencexa2xb is a
measure of the degree of overlap between ‘‘receptive fields’’ of
two neuronsa and b. The smaller this difference, the more the
overlap (s51.0). Notice that correlations are greater for neuro
with more overlapped receptive fields.
is

-

where symbols̄̄a denotes averaging the quantitysa with re-
spect to all$xb% but xa . This expression shows that th
average firing rate of theath neuron, which is equal to

^ s̄̄a&/t, is a monotonic function of the driving inputca .
Because of the noise, this neuron will fire occasionally ev
when the driving input is absent. Notice the network con
bution through the presence of theF1 functions. In the limit
J°0, i.e., when there is no coupling between neurons,
network contribution disappears and Eq.~23! reduces to

^ s̄̄a~k!&5
1

2 F11tanhS ca~x!2u

h D G , ~24!

which is a well known sigmoidal dependence of the firi
rate on a driving input. Expressions~23! and ~24! are con-
sistent with an experimental fact fromV1 of a cat that the

e

s

FIG. 8. Dependence of correlations upon noise in the networ
excitatory ~A! and inhibitory ~B! neurons. For both networks thi
relationship is independent on the drive amplitude, i.e., subthre
old and suprathreshold inputs yield the same behavior.~A! Solid
line: J50.2 andA50.5; dashed line:J50.2 andA51.5. Notice
that correlations exhibit a pronounced maximum.~B! Solid line: J
520.2 andA50.5; dashed line:J520.2 andA51.5. In this case
correlations grow with an increasing level of noise. In both figur
xa2xb50.8 ands51.0.
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firing rate of a cell increases with contrastA @40#, which is
proportinal toca . In Appendix D we sketch how to obtai
^sa(k)& and ^sa(k1 j )sb(k)&.

V. DISCUSSION AND SUMMARY

The main result of this paper is in establishing a mut
relation between quasiprecise~see below! temporal correla-
tions among neurons and the accuracy of the population
ing. A quantitative measure of the accuracy of the populat
coding is provided by the Fisher information. This quant
was determined for both purely excitatory and purely inhi
tory networks, in the limit of a not too long observation tim
when recurrent effects can be neglected, and compared
the maxima of the cross-correlation functionsC̄ab(0) for
two arbitrary neurons. If the change in the correlations
tween neurons is caused by a stimulus, then the Fisher in
mation changes accordingly in a monotonic fashion. Tha
if the amplitude of the drive increases then both the Fis
information ~Fig. 1! and the temporal correlations~Fig. 7!
grow. In Fig. 9 we display this one-to-one corresponde
between the Fisher information and the stimulus-driven te
poral correlationsC̄ab(0)stim between two arbitrary neuron
a and b. This figure suggests that this type of correlati
improves the coding accuracy. On the other hand, if
change in the correlations is caused by an intrinsic chang
the network, such as the change in the level of noise, t
there can be no monotonicity between such stimul
independent correlations and the Fisher information. T
can be seen by comparing the dependence ofĪ F andC̄ab(0)
on the level of noise~Fig. 2 vs Fig. 8!. Specifically, one can
note thatC̄ab(0) depends on the noise in the same fash
for both subthreshold and suprathreshold drives. This sho
be contrasted with the dependence ofĪ F upon noise, and the
fact that subthreshold and suprathreshold signals yield dif
ent behaviors. In Fig. 10, we display the relationship b
tween Ī F and these stimulus-independent correlatio
C̄ab(0)noise. For subthreshold inputs, there is no monoton
ity between these two quantities, and one can note m
scattered points in Figs. 10~a! and 10~c!. This pecular pattern
is a consequence of the fact that in some intervals correla
is a double-valued function of the Fisher information. F
suprathreshold inputs, stimulus-independent correlations
almost always harmful to the coding accuracy.

The above result that only stimulus-driven correlatio
always increase the accuracy of coding can be unders
using the concept of mutual information. The mutual info
mation I mut between activities of neurons and stimulus is
measure of their mutual dependency. Whenever the stim
is changing, the output of the network changes accordin
and I mut provides a quantitative measure of this chan
Since mutual information is directly related to the Fish
information in a monotonic way@5#, this suggests that ther
should be a monotonic relationship between the stimulus
the Fisher information. This is why stimulus-driven corre
tions should improve the accuracy of population coding.

Our conclusion about the relationship between stimul
driven correlations and the accuracy of coding is in agr
ment with experiment and analysis of Danet al. @25#. Those
authors studied the role of precise temporal correlations
l
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visual coding, and found that reconstruction of a stimulus
more accurate if these correlations are taken into acco
They also found that temporal correlations between neur
are stronger for pairs of neurons with more greatly overl
ping receptive fields. This is also consistent with our resu
~see Fig. 7!.

The precision of temporal correlations between neuron
the model studied in this paper is probably not too high. T
length of the time bint is of the order of an effective mem
brane time constant, which is about 10–20 ms. For this r
son, we are unable to say anything about correlations
smaller time scale 1–2 ms, relevant for a single spike wid
Nevertheless, within this model one can still take into a
count the temporal pattern of spikes.

The level of intrinsic noise in the network also has
influence on the population coding. We found that this infl

FIG. 9. The Fisher information vs stimulus-driven temporal c
relationsCab(0)stim . We varied the amplitudeA of the driving
input, and examined how the Fisher information and correlati
were changing.~A! Excitatory network withJ50.2; the solid line
corresponds toxa2xb50.8, and the dashed line toxa2xb50.1.
~B! Inhibitory network withJ520.2 and with the same graphica
convention as in~A!. Note that the Fisher information is a mono
tonic function of this type of correlation between neurons.
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FIG. 10. The Fisher information vs stimulus-independent temporal correlationsCab(0)noise. We varied the level of noise, and examine
how the Fisher information and correlations were changing. Cases~A! and~B! correspond to excitatory networks withJ50.3 and the driving
inputs: subthreshold (A50.5) ~A!, and suprathreshold (A51.2) ~B!. Cases~C! and~D! correspond to inhibitory networks withJ520.3 and
the driving inputs: subthreshold (A50.5) ~C!, and suprathreshold (A51.2) ~D!. Notice that for subthreshold driving inputs there is n
monotonicity between stimulus-independent correlations and the Fisher information@cases~A! and ~C!#. For some intervals correlation
Cab(0)noise is a double-valued function of the Fisher informationI F . This is the reason why there are many scattered points in~A! and~C!.
For suprathreshold inputs noise-induced correlations almost always decrease the Fisher information@cases~B! and ~D!#.
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ence depends strongly on the magnitude of the drive. If
amplitude of the drive is subthreshold, then the Fisher inf
mation has a maximum for some finite noiseh @Fig. 2~a!#. If
the amplitude is suprathreshold then the Fisher informa
decreases with increasing noise@Fig. 2~b!#, and is optimal
when the noise is absent. In other words, the accurac
coding is optimal for slightly noisy networks if the signal
subthreshold, and if the signal is suprathreshold the accu
is optimal for noiseless networks. This behavior resemb
the phenomenon of stochastic resonance@27–31#, with the
subtle difference that noise considered in this paper is
intrinsic property of the network, and not applied externa
as in the standard stochastic resonance phenomenon. I
latter case there have been studies about the degree of c
ence between the output and input of a system or informa
transfer, i.e., a mutual information, as a function of an ext
nal noise. The explanation for the noise-dependent beha
e
r-

n

of

cy
s

n

the
er-
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ior

is as follows. When a signal is weak~subthreshold! then
neurons fire very infrequently. The intrinsic noise can e
hance the signal from time to time, such that the result
signal crosses a threshold and there is an increase in
firing rate. This, in turn, increases the information transf
since the latter is a monotonic function of the former for lo
firing rates@42,43#. For a higher level of noise, the signal
dominated by noise; therefore, it becomes more difficult
say something about the original signal. In the opposite
gime, when the signal is strong~suprathreshold! then neu-
rons fire very often. In such circumstances increasing
level of noise disrupts the signal, and hence decreases
information transfer~mutual information! and therefore re-
duces the Fisher information.

Note that the Fisher information can be much larger
suprathreshold stimuli@compare scales in Figs. 2~a! and
2~b!#. Also, it is apparent that purely inhibitory networks a
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more broadly tuned to noise than purely excitatory networ
This feature might serve as one of the functional distinctio
between these two types of networks.

Another example when inhibitory networks are mo
broadly tuned than excitatory ones is depicted in Fig. 3. O
can see that the accuracy of the population coding is opti
for excitatory networks, but that inhibitory networks a
more ‘‘flexible’’ because they are more broadly tuned. Ex
tatory networks perform optimally for a synaptic strength
about 0.15–0.2 of the value of the background noise.

The dependence of the Fisher information on the ti
course is presented in Fig. 4. The almost linear depende

of Ī F on time can change into piecewise linear or nonlin
for sufficiently strong stimuli and for strong synapt
strength for excitatory networks. In that case, there can b

very rapid initial growth in Ī F followed by a subsequen
slower increase. This means that under certain conditions
processing of information about a stimulus can be very f
There are experimental indications that a visual system
cesses information~face recognition! very quickly, at times
of the order of hundreds of milliseconds or even fas
@41,44–46#, despite significant conduction delays caused
many recurrent cortical connections. This may suggest
the visual system uses basically a feedforward mechanis
early processing, with only a minor contribution comin
from the recurrent connections@41#. However, we are unable
to address this question explicitly within our approach, sin
the network architecture considered in this paper negl
recurrent connections, and this fact is clearly a limitation
the approach. Moreover, our network architecture is unifo
with respect to the values of synaptic strength~it is either
purely excitatory or purely inhibitory!. Mixed networks
could produce a more complex behavior.

The model for the short-term synaptic dynamics descri
by Eq.~4! neglects the resource~neurotransmitters! recovery.
This process, which typically takest rec'100 ms, can be
incorporated into the model, in Eq.~4!, by substituting sum
a( j 51

k21sb( j )exp@2(k2j)t/trec# for asb(k21), wheret is the
time bin. Because the duration of the time bin ist;10–20
ms, exponents with lowj decay rapidly and the major con
tribution to the sum yield the last few presynaptic spik
The analysis in this paper is restricted only to the last pres
aptic spike, i.e., the termsb(k21). This term should capture
the essence of the influence of the short-term synaptic
namics on the accuracy of coding. The remaining terms
the sum would have an effect on the temporal correlati
between neurons, leading to a broadening of peaks in
time-dependent correlation functions~Fig. 6!. The character-
istic width of those peaks, which characterizes the degre
memory in the network, would be of the order oft rec /t.

The results of this work suggest that the short-term s
aptic dynamics has an impact on the coding accuracy o
for purely excitatory networks~Fig. 5!. Depression and fa
cilitation have opposite effects. That is, the former increas
and the latter decreases, the accuracy of coding. To gai
intuitive understanding of this behavior, note that depress
in general, reduces redundancy in a signal transmited
tween synaptically connected cells. On the other hand, fa
tation enhances redundancy, because it amplifies the su
quent signals. Redundancy in a signal always decrease
s.
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information content@47#. Therefore, depression increases
formation transfer, whereas facilitation decreases it. Depr
ing synapses are especially optimal for very strong stim
~suprathreshold! in networks with strong excitatory synapti
couplings@Fig. 5~a!#. This modulatory behavior of excitator
synapses may have important functional consequences
information processing in neural networks, e.g., in input la
ers of the cerebral cortex.

The fact that purely inhibitory networks are insensitive
short-term synaptic dynamics in terms of the population c
ing can be understood in the following way. By their natu
inhibitory synapses inhibit other cells from firing, reducin
the information transfer between cells. For that reas
whether there is some process which modulates inhibit
synapses or not, it should not have any dramatic influence
the information transfer. Therefore, the accuracy of cod
should stay unaffected. This conclusion is also consis
with Fig. 3.

Finally, the results of this paper confirm the previous fin
ing @6# that the Fisher information is proportional to th
number of neurons encoding information, regardless of
degree of correlations between them. This result sugg
that larger networks should be more accurate~in principle! in
decoding information about stimuli.
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APPENDIX A

In this appendix we show how to reduce the dynamics
the model presented in this paper to the Poisson dynam
Reduction to the Poisson uncorrelated dynamics is obta
when ~i! there is no synaptic connections between neuro
i.e., in the limitJ°0; ~ii ! the noise is weak and the input
subthreshold, i.e., in the limits (u2c)/h@1 andc,u; and
~iii ! the observation timeMt is large, i.e., in the limit
M°`.

Probability that the neurona is at statesa(k) at time step
k is given by Eq.~2! in the text. When the condition~i! above
is satisfied, this equation reduces to

P@sa~k!#5
1

2 F11„2sa~k!21…tanhS c2u

h D G . ~A1!

Now including the second condition~ii ! yields

tanhS c2u

h D'2112e2(c2u)/h. ~A2!

After insertion of this into Eq.~A1!, one obtains the prob
ability of firing P@1# at any time stepk given by

P@1#'e2(c2u)/h, ~A3!
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and the probability of not firingP@0# at any time stepk
given by

P@0#'12e2(c2u)/h. ~A4!

The probability P@n spikesuM # of having n spikes at
time intervalMt is given by

P@n spikesuM #5S M

n D P@1#nP@0#M2n

5S M

n D e2n(c2u)/h@12e2(c2u)/h#M2n.

~A5!

Next denotingp[e2(c2u)/h, and using the Stirling formula
k!'A2pk(k/e)k, which is valid for large naturalk, we have

lim
M→`

P@n spikesuM #5 lim
M→`

Mn

n!
A M

M2nS M

M2nD M2n

3pn~12p!M2n

'
Mnpn

n!
lim

M→`

~12p!M. ~A6!

The next step is to define a new quantityq such thatMp
5q. We keep this quantity constant, which means thap
must tend to zero. Including that, we obta
P@n spikesuM #M°`'
~Mp!n

n!
lim
p→0

~12p!q/p

5
~Mp!n

n!
e2q

5
„M exp@2~c2u!/h#…n

n!

3e2M exp[2(c2u)/h] . ~A7!

The formula given by Eq.~A7! represents the standard Poi
son process@39# with the mean firing rate equal to exp@2(c
2u)/h#/t.

APPENDIX B

In this appendix we derive Eq.~12! in the main text. This
equation is the joint probability for the activities of man
neurons. However, it is instructive to start first with a sing
neuron case.

According to @39#, the joint probabilityP of a variable
s(t) at timest1,t2,•••,tM is given by

P~s1 ,s2 , . . . ,sM !5P~s1 , . . . ,sk!

3P~sk11 , . . . ,sMus1 , . . . ,sk!,

~B1!

wheresk5s(tk) andP(sk11 , . . . ,sMus1 , . . . ,sk) is a condi-
tional probability that variable s assumes values
sk11 , . . . ,sM at timestk11 , . . . ,tM , provided it had values
s1 , . . . ,sk at previous timest1 , . . . ,tk . From Eq.~B1!, we
easily obtain
n by
P~s1 ,s2 , . . . ,sM !5P~s1 , . . . ,sM21!P~sMus1 , . . . ,sM21!

5P~s1 , . . . ,sM22!P~sM21us1 , . . . ,sM22!P~sMus1 , . . . ,sM21!

5•••5P~s1!P~s2us1!P~s3us1 ,s2!•••P~sMus1 , . . . ,sM21!, ~B2!

which is exactly Eq.~5! in the text.
Now let us find the joint probability for two neurons with correlated activity. If we denote an activity of the first neuro

A, and an activity of the second neuron byB, whereA5$a1 ,a2 , . . . ,aM% and B5$b1 ,b2 , . . . ,bM%, then from a formula
P(A,B)5P(A)P(BuA) and Eq.~B1!, we obtain

P~a1 ,b1 ;a2 ,b2 ; . . . ;aM ,bM !5P~a1 ,b1 ; . . . ;aM21 ,bM21 ;aM !P~bMua1 ,b1 ; . . . ;aM21 ,bM21 ;aM !

5P~a1 ,b1 ; . . . ;aM21 ,bM21!P~aMua1 ,b1 ; . . . ;aM21 ,bM21!

3P~bMua1 ,b1 ; . . . ;aM21 ,bM21 ;aM !

5•••5P~a1!P~b1ua1!P~a2ua1 ,b1!P~b2ua1 ,b1 ;a2!•••P~aMua1 ,b1 ; . . . ;aM21 ,bM21!

3P~bMua1 ,b1 ; . . . ;aM21 ,bM21 ;aM !. ~B3!
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In our network case we assume that the neuronA at any time
tk does not ‘‘know’’ anything about the activity of the neu
ron B at that time. In other words, we assume that there
certain small delay in information transfer. This assumpt
corresponds to the requirement thatbk does not depend on
ak , and vice versa, so that

P~bkua1 ,b1 ; . . . ;ak21 ,bk21 ;ak!

[P~bkua1 ,b1 ; . . . ;ak21 ,bk21!, ~B4!

which after insertion into Eq.~B3! gives

P~a1 ,b1 ;a2 ,b2 ; . . . ;aM ,bM !

5P~a1!P~b1!P~a2ua1 ,b1!P~b2ua1 ,b1!•••

3P~aMua1 ,b1 ; . . . ;aM21 ,bM21!

3P~bMua1 ,b1 ; . . . ;aM21 ,bM21!. ~B5!

In the case ofN0 neurons one can easily generalize E
~B5! to

P@$s~1!%,$s~2!%, . . . ,$s~M !%#

5 )
a51

N0

P@sa~1!#P@sa~2!u$s~1!%#•••

3P@sa~M !u$s~1!%, . . . ,$s~M21!%#,

~B6!

wheresa(k) is the activity of theath neuron at timetk . This
equation is exactly Eq.~12! in the text.

APPENDIX C

In this appendix we show how to perform averaging ov
the distribution of the centers of the driving inputs$xa%. We
assume that the maxima of the drives are independen
each other and are uniformly distributed with densityr0.
Thus, for any quantityQ@c1(x), . . . ,cN0

(x)#, depending on

the driving inputs$ca% of all neurons, we have

Q̄@$ca%#5E
21/2r0

1/2r0 S )
i 51

N0

dxir0D Q@c1~x!, . . . ,cN0
~x!#

5r0
N0E

21/2r0

1/2r0 S )
i 52

N0

dxi D S S E
21/2r0

x2s

dx11E
x1s

1/2r0
dx1D

3Q@0,c2 ,c3 , . . . ,cN0
#1E

x2s

x

dx1

3QF2
A

s
~x2x1!1A,c2 , . . . ,cN0G

1E
x

x1s

dx1QFA

s
~x2x1!1A,c2 , . . . ,cN0G D .

~C1!
a
n

.

r

on

Performing the necessary algebra to the lowest order in d
sity r0 yields

Q̄@$ca%#5~122r0s!N0Q@0,0, . . . ,0#

12r0~122r0s!N021(
k51

N0 E
0

s

dzk

3QF0, . . . ,2
A

s
zk1A,0, . . . ,0G1O~r0

2!.

~C2!

The last equality can be further simplified for sparse den
r0, when 2r0sN0!1. In this limit we obtain

Q̄@$ca%#5Q@0, . . . ,0#12r0(
k51

N0 E
0

s

dzkQF0, . . . ,0,

2
A

s
zk1A,0, . . . ,0G1O~r0

2!. ~C3!

We will make use of this formula in Appendix D.

APPENDIX D

In this appendix we sketch how to derive the Fisher
formation @Eqs. ~14! and ~16!#, as well as the correlation
functions@Eqs.~20! and ~21!#.

1. Derivation of the Fisher information

The first step is to rewrite the Fisher information@Eq. ~8!#,
in a more convenient form,

I F52(
$s%

P@$s%;x#
]2ln P@$s%;x#

]x2

5(
$s%

1

P@$s%;x# S ]P@$s%;x#

]x D 2

2
]2

]x2 S (
$s%

P@$s%;x# D
5(

$s%

1

P@$s%;x# S ]P@$s%;x#

]x D 2

, ~D1!

since the joint probabilityP@$s%;x# is normalized, i.e.,
($s%P@$s%;x#51. Next, using the fact that the joint probabi
ity P@$s%;x# is represented by Eq.~12! in the text, we obtain
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I F~x!5(
$s%

(
i 51

M

(
b51

N0 P@$s%;x#

P@sb~ i !u$s~1!%, . . . ,$s~ i 21!%;x#2 S ]P@sb~ i !u$s~1!%, . . . ,$s~ i 21!%;x#

]x D 2

1(
$s%

(
i , j 51

M

(
b51

N0

(
gÞb

N0 P@$s%;x#

P@sb~ i !u$s~1!%, . . . ,$s~ i 21!%;x#P@sg~ j !u$s~1!%, . . . ,$s~ j 21!%;x#

3
]P@sb~ i !u$s~1!%, . . . ,$s~ i 21!%;x#

]x

]P@sg~ j !u$s~1!%, . . . ,$s~ j 21!%;x#

]x
. ~D2!
ti

t

t

ing

m

er-
The second term on the right hand side of the above equa
vanishes. To see this, note that

(
sb( i )50

1
]P@sb~ i !u$s~1!%, . . . ,$s~ i 21!%;x#

]x

5
1

2 (
sb( i )50

1

@2sb~ i !21#
] tanh@Rb~ i 21!/h#

]x
50.

~D3!

Thus one can write the Fisher information as

I F~x!5t(
k51

M

I F
(k)~x!, ~D4!

where

I F
(k)~x!5(

$s%
(
a51

N0 P@$s~1!%, . . . ,$s~M !%;x#

P@sa~k!u$s~1!%, . . . ,$s~k21!%;x#2

3S ]P@sa~k!u$s~1!%, . . . ,$s~k21!%;x#

]x D 2

.

~D5!

One can interpretI F
(k) as the Fisher information per time a

kth time step.

a. Single neuron

Using Eqs.~D4! and ~D5! one can derive Eq.~9! in the
main text. In this caseN051, and the Fisher information a
time stepk reads

I F
(k)~x!5(

$s%

)
i 51

M

P@s~ i !;x#

P@s~k!;x#2 S ]P@s~k!;x#

]x D 2

5 (
s(k)50

1
1

P@s~k!;x# S ]P@s~k!;x#

]x D 2

, ~D6!

where we summed over all$s% but s(k) using the fact that
(s( l )50

1 P@s( l );x#51 @see Eq.~D9! below#. Next steps are
straightforward. Using Eq.~6!, summing overs(k), and us-
ing Eq. ~D4!, one obtains Eq.~9! in the text.
on b. Many neurons

Since ourI F depends on the driving inputs$ca% of all
neurons with different locations of maxima$xa%, one must
averageI F over those$xa%. In Appendix C we performed
such averaging for any quantityQ depending on$ca%. We
can make use of Eq.~C3! from Appendix C and write

Ī F@A#5I F@0, . . . ,0#12r0(
k51

N0 E
0

s

dzkI FF0, . . . ,0,

2
A

s
zk1A,0, . . . ,0G1O~r0

2!. ~D7!

The first term on the right hand side of Eq.~D7! disappears.
This is due to the fact that it does not depend on the driv
inputs, or equivalently thatP@$s(1)%, . . . ,$s(M )%# does not
depend onx, and therefore a derivative with respect tox in
Eq. ~D5! yields zero. Thus, to findĪ F one must find
I F(0, . . . ,0,ca,0, . . . ,0),which is present in the second ter
on the right hand side in Eq.~D7!. Below we sketch how to
do this.

2. Absence of the short-term synaptic dynamics

First, let us calculateI F
(1) . According to Eq.~D5!, we have

I F
(1)5 (

a51

N0

(
$s(1)%50

1

••• (
$s(M )%50

1
P@$s~1!%, . . . ,$s~M !%;x#

P@sa~1!;x#2

3S ]P@sa~1!;x#

]x D 2

5 (
a51

N0

(
$s%2sa(1)

S )
bÞa

N0

P@sb~1!;x# D
3S )

b51

N0

P@sb~2!u$s~1!%;x#•••P@sb~M !u$s~1!%, . . . ,

3$s~M21!%;x# D (
sa(1)50

1
1

P@sa~1!;x#

3S ]P@sa~1!;x#

]x D 2

. ~D8!

The first summation after the second equality sign is p
formed over all$s(1)%, . . . ,$s(M )% exceptsa(1). All these
sums give 1, since



r

.

act

4250 PRE 61JAN KARBOWSKI
(
sb(k)50

1

P@sb~k!u$s~1!%, . . . ,$s~k21!%;x#5
1

2 (
sb(k)50

1 F11„2sb~k!21…tanhS Rb~k21!

h D G51. ~D9!

The remaining sum oversa(1) is easy to perform:

I F
(1)5 (

a51

N0

(
sa(1)50

1
@2sa~1!21#

@11„2sa~1!21…tanh„Ra~0!/h…# S ] tanh„Ra~0!/h…

]x D 2

5 (
a51

N0

cosh2FRa~0!

h G S ] tanh@Ra~0!/h#

]x D 2

5 (
a51

N0 1

h2 cosh2„Ra~0!/h…
S ]ca

]x D 2

, ~D10!

whereRa(0)5ca(x)2u.
The termI F

(2) is calculated as follows

I F
(2)5 (

a51

N0

(
$s%

P@$s~1!%, . . . ,$s~M !%;x#

P@sa~2!u$s~1!%;x#2 S ]P@sa~2!u$s~1!%;x#

]x D 2

5 (
a51

N0

(
$s(1)%

(
sa(2)

1

P@sa~2!u$s~1!%;x# S ]P@sa~2!u$s~1!%;x#

]x D 2S)
b

P@sb~1!;x# D (
$s%2$s(1)%2sa(2)

S )
bÞa

P@sb~2!u$s~1!%;x# D
3S )

b51

N0

P@sb~3!u$s~1!%,$s~2!%;x#•••P@sb~M !u$s~1!%, . . . ,$s~M21!%# D . ~D11!

By the same argument as above, the summation over all$s% different from $s(1)% andsa(2) yields 1. The summation ove
sa(2) yields a similar result as before forI F

(1) , with substitutionRa(1) for Ra(0). After that, one can write

I F
(2)5 (

a51

N0

(
s1(1)50

1

••• (
sa(1)50

1

••• (
sN0

(1)50

1 S )
b51

N0

P@sb~1!;x# D 1

h2cosh2„Ra~1!/h…
S ]ca

]x D 2

5 (
sa11(1)50

1

••• (
sa1N(1)50

1 S )
b5a11

a1N

P@sb~1!;x# D 1

h2cosh2~Ra~1!/h!
S ]ca

]x D 2

5
1

2Nh2 S ]ca

]x D 2S @12tanh~2u/h!#N

cosh2@~ca2u!/h#
1S N

1 D @12tanh~2u/h!#N21@11tanh~2u/h!#

cosh2@~J1ca2u!/h#
1•••

1S N

ND @11tanh~2u/h!#N

cosh2@~NJ1ca2u!/h#
D . ~D12!

Note that products in Eq.~D12! after the second equality containN terms. This reflects the fact that theath neuron is
connected toN other neurons denoted bya11, a12, . . . ,a1N. The rest of termsI F

(k) are performed in the similar fashion
Term I F

(3) is equal to~as one can expect by analogy!

I F
(3)5

1

22Nh2 (
a51

N0 S ]ca

]x D 2

(
k150

N

(
k250

N S N
k1

D S N
k2

D @12tanh~2u/h!#N2k1@11tanh~2u/h!#k1

cosh2@~k2J1ca2u!/h#
F12tanhS k1J2u

h D GN2k2F1

1tanhS k1J2u

h D Gk2

. ~D13!

The key assumption in deriving Eqs.~D10!, ~D12!, and~D13! is N!N0. As long as the observation timeMt is not too long,
i.e., whenM satisfies the conditionNM,N0, the formulas forI F

(k) have the above relatively simple form. This is due to the f
that for such short times recurrent effects will not yet appear.

Next, using explicit form for the driving inputca @Eq. ~10!#, we can perform integration ofI F
(k) over x according to Eq.

~D7!. Only terms with cosh depend onx. The result is Eq.~14! in the text.



PRE 61 4251FISHER INFORMATION AND TEMPORAL . . .
In the limit J°0, the Fisher information for many neurons given by Eqs.~13!–~15! reduces toĪ F ~multiplied by the
number of neuronsN0) for a single neuron@Eq. ~11!#. To see this, note that forJ°0 we have

(
k150

N

•••(
ki 21

N

F1
( i )~h,u;J50;k1 , . . . ,ki 21!

5)
j 51

i 21

(
kj 50

N S N

kj
D F11tanhS 2

u

h D GkjF12tanhS 2
u

h D GN2kj

5)
j 51

i 21

2N52N( i 21). ~D14!

3. Inclusion of the short-term synaptic dynamics

Slightly more complicated is calculation ofĪ F when short-term synaptic dynamics, i.e., whenaÞ0, is included. Repeating
the same steps as before, one obtains Eq.~16! in the text. For the sake of consistency, we show below that Eq.~16! reduces
to Eq. ~14! in the limit a°0. In this limit theG( i ) function does not depend on$n% indices, and we are able to sum over$n%.
We have

(
m50

1

(
k150

1

••• (
ki 2250

1

(
n150

1

••• (
ni 2250

1

H ( i )~h,J,a50,u;$k%,$n%!G( i )~h,J,a50,u;m,ki 22!5 (
m50

1

(
k150

1

••• (
ki 2250

1

G( i )~h,J,a

50,u;m,ki 22! (
n150

1

••• (
ni 2250

1

H ( i )~h,J,a50,u;$k%,$n%!. ~D15!

The sums over$n% can be executed as follows:

(
n150

1

••• (
ni 2250

1

H ( i )~h,J,a50,u;$k%,$n%!5S )
j 51

i 22 F11tanhS kj 21J2u

h D GkjF12tanhS kj 21J2u

h D G12kj D
3)

j 51

i 22 S (
nj 50

1 F11tanhS nj 21J2u

h D GnjF12tanhS nj 21J2u

h D G12nj D
52i 22)

j 51

i 22 F11tanhS kj 21J2u

h D GkjF12tanhS kj 21J2u

h D G12kj

. ~D16!

If we now identify indexm with ki 21 and insert the result of the summation into Eq.~16!, we obtain Eq.~14! with N51.

4. Derivation of the correlation functions

Analogically, one can determine^sa(k)& and^sa(k1 j )sb(k)&. As an example, we show how to derive^sa(k)&. According
to a definition we have

^sa~k!&5 (
$s(1)%

••• (
$s(k)%

••• (
$s(M )%

sa~k!P@$s~1!%, . . . ,$s~M !%;x#. ~D17!

Invoking the same argument as before@Eq. ~D9!#, we notice that all sums over$s(M )%, . . . ,$s(k11)% yield 1. Thus the
remaining sums read

^sa~k!&5 (
$s(1)%

••• (
$s(k21)%

S )
b51

N0

P@sb~1!;x#P@sb~2!u$s~1!%;x#•••P@sb~k21!u$s~1!%, . . . ,$s~k22!%;x# D
3

1

2
F 11tanhS (

g
J̃ag~k21!sg~k21!1ca2u

h
D G . ~D18!

Performing the first sum over$s(k21)% yields
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^sa~k!&5 (
$s(1)%

••• (
$s(k22)%

S )
b51

N0

P@sb~1!;x#•••P@sb~k22!u$s~1!%, . . . ,$s~k23!%;x# D 1

2N11

3 (
k50

N S N

k D F 11tanhS (
g

J̃ag~k22!sg~k22!2u

h
D G N2kF 12tanhS (

g
J̃ag~k22!sg~k22!2u

h
D G k

3F11tanhS ~N2k!J1ca2u

h D G . ~D19!

We see a similar pattern as before in deriving the Fisher information. Now, by analogy, it is not difficult to write the
sum, and the result is Eq.~23! in the text. In a similar manner, one can determine^sa(k1 j )sb(k)&.
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